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Preface

Simulation is experimentation with models. This book describes new com-
puter programs for interactive modeling and simulation of dynamic systems,
such as aerospace vehicles, control systems, and biological systems.
Simulation studies for design or research can involve many hundreds of
model changes, so programming must be convenient, and computations must
be as fast as possible.

This book is about advanced simulation programming and describes many
new techniques. We provide only a brief review of routine simulation pro-
gramming but demonstrate computer software for remarkably fast and
respectably large simulation studies on inexpensive personal computers or
workstations. For hands-on experiments, the enclosed CD contains an indus-
trial-strength software package rather than a toy demonstration program.1

1OPEN DESIRE solves up to 40,000 ordinary differential equations under Linux, and up to
20,0000 differential equations under Microsoft WindowsTM, so that one can implement
respectable vectorized Monte Carlo studies. The DESIRE language, widely used since 1985,
accepts scalar and vector differential equations and difference equations in a natural mathe-
matical notation, for example,

d/dt x = – x * cos(w * t) + 2.22 * a * x
Vector y = A * x + B * u

Programs entered in editor windows immediately compile, execute, and produce solution dis-
plays. The program in the book CD allows the user to experiment with all the examples in the
text. The Open Source programs in the book CD include binary and source code and a com-
prehensive reference manual. The Linux version can be recompiled for other Unix-type
systems, including Solaris© and Cygwin (Unix under Windows©).



xiv Preface

The included OPEN DESIRE program for Linux solves up to 40,000 ordi-
nary differential equations and implements exceptionally fast and convenient
vector operations. A smaller educational 20,000 differential-equations ver-
sion for Microsoft WindowsTM can be obtained without charge from the
author by sending an email to gatmkorn@aol.com. The user can run, edit,
and modify the example simulations keyed to the figures in this book, plus
many other examples. Many of our programming principles also apply to
simulation programs other than DESIRE.

Chapter 1 introduces our subject with a few programs for small differen-
tial-equation models, including a simple guided-missile simulation. The
remainder of the book presents new material. Chapter 2 begins with a careful
discussion of models that involve sampled-data operations and sampled-data
difference equations together with differential equations. We model mixed
analog–digital systems such as simulated digital controllers and systems with
limiters and switches. At this point, we show that many very useful devices
(e.g., track-hold circuits, trigger circuits, signal generators, automatic scal-
ing) are neatly and efficiently modeled with simple difference equations.
Last, but not least, we propose improved techniques for proper numerical
integration of switched variables.

Truly powerful simulation programs need a readable notation for vector
and matrix assignments, differential equations, and difference equations.
Chapter 3 introduces a novel vector compiler that produces very fast pro-
grams for vector and matrix operations. We also demonstrate efficient use of
submodels. We present examples from control engineering and nuclear-reac-
tor simulation. The following chapter then shows how we use vectors to repli-
cate complete models.

Chapter 4 describes practical model replication (vectorization): a single sim-
ulation run with a vector model will replace hundreds or thousands of conven-
tional simulation runs. We apply the vectorizing compiler introduced in Chapter
3 to parameter-influence studies and Monte Carlo simulation of dynamic sys-
tems with noise-perturbed parameters and random initial conditions. We com-
pare repeated-run and vectorized Monte Carlo studies of a weapon trajectory.
Our interactive programs produce not just time histories of system variables but
also time histories of statistics such as averages, mean squares, and probability
estimates. We also show explicitly how to estimate probability densities. 

Chapter 5 discusses more difficult vectorized Monte Carlo simulations
involving time-varying noise, which has to be derived from periodic pseudo-
random noise samples. Examples include Monte Carlo simulation of a contin-
uous random walk, another trajectory study, and two vectorized control-system
simulations. An inexpensive 2.4-GHz personal computer exercised 1000
random-input control-system models in seconds. We also describe a new heuris-
tic test for the quality of pseudorandom noise.



Chapter 6 discusses vector models of neural networks including a new
pulsed-neuron model. Chapter 7 deals with vectorized programs for fuzzy-set
controllers, partial differential equations, and agroecological models repli-
cated at many points of a landscape map. The Appendix gets a small selection
of reference material out of the way of the main text.

GRANINO A. KORN

Chelan, Washington
October 2006
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1
Introduction to 
Dynamic-system Simulation

DYNAMIC-SYSTEM MODELS AND COMPUTER PROGRAMS

1-1. Computer Modeling and Simulation

Simulation is experimentation with models. Simulation for engineering
design, research, and education studies must rapidly exercise a wide variety
of models and then store and access a large volume of results. This is practi-
cal only with models programmed on computers. 

Dynamic-system models relate model-system states to earlier states. Classical
physics, for example, predicts continuous changes of quantities such as position,
velocity, or voltage with continuous time. Computer simulation of such systems
started in the aerospace industry and is now indispensable in biology, medicine,
and agroecology as well as in all engineering disciplines. At the same time, dis-
crete-event simulation has gained importance for business and military planning.

Simulation is at its best when combined with mathematical analyses. But
simulation results can often provide insight and possibly useful decisions
where exact analysis is impractical. This was true for many early control-
system optimizations. As another example, Monte Carlo simulations simple-
mindedly measure statistics over repeated experiments to solve problems that
are too complicated for probability theory analysis. Simulation results must
eventually be validated by real experiments, just like analytical results.

1

Advanced Dynamic-system Simulation: Model-replication Techniques 
and Monte Carlo Simulation By Granino A. Korn
Copyright © 2007 by John Wiley & Sons, Inc.



2 Introduction to Dynamic-system Simulation

Computer simulations can be speeded up or slowed down at the experi-
menter’s convenience. You can simulate a flight to Mars or to Alpha Centauri
in one second. Periodic clock interrupts synchronizing suitably scaled simu-
lations with real time permit “hardware in the loop”: you can “fly” a real
autopilot—or a real human pilot—on a tilting platform controlled by a com-
puter flight simulation. In this book, we are interested in very fast simulation,
for we want to study the effects of many different model changes.
Specifically, we want to

1. Enter and edit programs in convenient editor windows.
2. Use typed or graphical-interface commands to start, stop, and pause

simulations, to select displays, and to make parameter changes. Results
ought to appear immediately to provide an intuitive “feel” for the
effects of model changes (interactive modeling).

3. Program systematic parameter-influence studies and produce cross-
plots or tables.

4. Program model changes to optimize effectiveness measures, and study
effects of random parameter changes or random model inputs by taking
statistics on repeated simulations (Monte Carlo simulation).

1-2. Differential-equation Models

Continuous-system simulation models delayed interactions of physical state
variables x1, x2, … with first-order ordinary differential equations (state
equations)

(d/dt) xi = fi(t; x1, x2, …; y1, y2, …; a1, a2, …) (i = 1, 2, …) (1-1a)

Here t represents the time, and the quantities

yj = gj(t; x1, x2, ...; y1, y2, …; b1, b2, …) (j = 1, 2, …) (1-1b)

are defined variables. a1, a2, …, and b1, b2, … are constant model
parameters.

Simulation programs exercise such models by solving the state-equation
system (1-1) to produce time histories of the system variables xi = xi(t) and
yj = yj(t) for t = t0 to t = t0 + TMAX, starting with given initial values t0 and
xi(t0). In Section 1-6 and Chapter 2, we shall add sampled-data operations
representing periodic inputs and outputs, sample-holds, and digital
controllers.



The state variables xi are system outputs. They start at t = t0 with given
initial values; subsequent values are produced by an integration routine
(Section 1-7) from the fi-values generated by the preceding execution
(derivative call) of the operations (1). 

There are three kinds of defined variables yj:

1. system inputs (specified functions of the time t)
2. system outputs
3. intermediate results needed to compute the derivatives fi

It must be possible to sort the defined-variable assignments (1-1b) into a pro-
cedure that successively derives all the yj from state variables xi and/or the
time t without recurrence relations or “algebraic loops” (Section 1-9). 

Some dynamic systems (e.g., systems involving interconnected mechani-
cal devices in automotive engineering and robotics) are modeled with differ-
ential-equation systems that cannot be explicitly solved for state-variable
derivatives as in Eq. (1-1). Simulation then requires solution of algebraic
equations at each integration step. Such differential-algebraic-equation
(DAE) systems are not treated in this book. References [1–4] describe suit-
able mathematical methods and special software.

1-3. Interactive Modeling—Experiment Protocol and 
Simulation Studies

Practical computer simulation is not simply a matter of programming and
solving model equations. We must also make it convenient to modify our
models and try many different experiments (see also Section 1-5). In addition
to DYNAMIC program segments listing the model equations (1-1), each sim-
ulation study requires an experiment protocol program that sets and changes
initial conditions and model parameters, calls computer runs, and displays or
tabulates solutions for different model configurations. 

The simplest experiment protocols are just sequences of successive
commands, say

a = 20.0 | b = – 3.35 (set parameter values)
x = 12.0 (set the initial value of x)
drun (make a differential-equation

-solving simulation run)
reset (reset initial values)
a = 20.1 (change model parameters)
b = b – 2.2
drun (try another run)

Dynamic-system Models and Computer Programs 3



Each drun command calls a differential-equation-solving simulation run, and
reset resets initial conditions. Typed commands ought to execute immediately
to permit interactive modeling. The operator inspects the solution output after
each simulation run and then types new commands for the next run. Command-
mode operation also permits interactive program debugging [5]. 
A simulation study combines such commands into a storable program seg-
ment (experiment-protocol script) that can branch and loop to call repeated
simulation runs for different parameter combinations. Simulation studies
may involve thousands of model and parameter changes, so programming
must be easy and computations must be as fast as possible. This is why we
like to interpret experiment-protocol scripts and compile the program seg-
ments executing the actual simulation runs.

1-4. Simulation Software

Commercially available equation-oriented simulation programs such as
ACSLTM accept system equations in a more or less human-readable form,
sort defined variable assignments as needed, and feed the sorted equations to
an optimizing Fortran or c compiler [5]. Berkeley Madonna and DESIRE
(see below) have built-in equation-language compilers and execute immedi-
ately. Block-diagram interpreters (e.g., SimulinkTM, VissimTM, and the open-
source program Scicos) permit graphical block-diagram composition and
immediately execute interpreted simulation runs. Such programs usually pro-
vide equation-language blocks for complicated expressions. Interpreted code
is slow; production runs are sometimes translated into c for faster execution.
Alternatively, ACSLTM, Easy5TM, and Berkeley Madonna have block-diagram
preprocessors for compiled simulation programs. More advanced modeling
is possible with the Modelica language [6–8].

1-5. OPEN DESIRE and DESIRE

The simulation programs described in this book, and, in particular, our new
techniques for model replication (vectorization), Monte Carlo simulation,
and submodels (Chapters 3–7), use the open-software simulation package
OPEN DESIRE for Linux, Unix including Cygwin (Unix under Windows),
and Microsoft WindowsTM, or the commercially available DESIRE/2000
program for Windows.1 DESIRE simulation systems allow inexpensive per-
sonal computers and workstations solve thousands of differential equations
in seconds.

4 Introduction to Dynamic-system Simulation

1 The earlier (1995) Windows version of DESIRE discussed in References [1,2] lacks the
vector-compilation features used in this book. 



How a Simulation Run Works 5

DESIRE uses double-precision (64-bit) floating-point arithmetic and
accepts command scripts and model descriptions in a readable mathematical
notation such as 

y = a * cos(x) + b d/dt x = – x + 4 * y

Command scripts can include operating-system calls, shell scripts, and calls to
other computer programs. DESIRE’s command-script language is itself a
general-purpose mathematical language and handles vectors, matrices, and
even complex numbers (e.g., for frequency-response and root-locus plots) [9].
Programs are entered and edited in editor windows (Fig. 1-1). Each program
begins with an experiment-protocol script that is interpreted much like an
advanced Basic dialect. When the experiment-protocol script encounters a
drun statement, a built-in runtime compiler automatically compiles a
DYNAMIC program segment listing model equations. The state-equation-
solving simulation run then executes at once and produces solution displays
in bright color. 

Very fast compilation (typically under 50 ms) simplifies interactive mod-
eling. Experimenters can immediately observe results of programmed or
screen-edited models and experiment-protocol changes. One can enter and
edit different models in multiple editor windows and run these models in turn
to compare results (Fig. 1-1). Runtime displays show solution time histories
and error messages during rather than after each simulation run, so that you
can save time by aborting undesirable runs before they complete. 

The experiment-protocol script starting each DESIRE program defines an
experiment. Subsequent DYNAMIC program segments define models used
in the experiment and specify runtime input/output requests. An experiment
protocol can call multiple DYNAMIC segments with different models, dif-
ferent versions of the same model, and/or different input/output operations.

HOW A SIMULATION RUN WORKS

1-6. Sampling the DYNAMIC Segment Variables

When drun calls a simulation run, the program initializes input/output opera-
tions requested by the DYNAMIC program segment. The independent variable
t (simulation time) and the differential-equation state variables start with initial
values assigned by the experiment protocol.2 A first pass through the
DYNAMIC-segment code [Eq. (1-1)] produces initial values of the defined

2 Unspecified initial values of unsubscripted differential-equation state variables conveniently
default to 0.



6 Introduction to Dynamic-system Simulation

FIGURE 1-1a. OPEN DESIRE running under Linux. The first dual-monitor screen shows a
file-manager window for calling user programs, the DESIRE command window, a graph win-
dow, and an editor window. The second screen has a file manager and three editor windows;
one can click on any file-manager or editor window to run and compare different programs.
On the third screen, two independent simulations run in separate command windows. Solution
graphs were set to black-on-white for publication, but normally each displayed curve has a dif-
ferent color.



How a Simulation Run Works 7

FIGURE 1-1b. DESIRE on a dual WindowsTM screen showing a file manager window, two
editor windows, and a command Window. The red OK button on each DESIRE editor window
transfers the selected edited program to DESIRE. This makes it convenient to compare two or
more programs.

FIGURE 1-1c. Cygwin (Unix under WindowsTM) display with a Unix console window, the
DESIRE graphics window, and an editor window using the open-source Crimson Editor. The
original display was in color.



variables [Eq. (1-1b)]. Unless stopped, simulations run from the initial time t =
t0 to t = t0 + TMAX. You can stop a simulation run by typing ctrl c and space
(zz under Windows), and restart or extend a run with drun.

DESIRE normally samples DYNAMIC-segment variables for output (usu-
ally to displays) or sampled-data operations at NN uniformly spaced sam-
pling times (communication times):

t = t0, t0 + COMINT, t0 + 2 COMINT, … ,
t0 + (NN – 1)COMINT = t0 + TMAX (1-2a)

with

COMINT = TMAX/(NN – 1) (1-2b)

The experiment-protocol script sets appropriate values of t0, TMAX, and
NN or uses default values listed in the DESIRE manual.

If the DYNAMIC program segment contains differential equations (d/dt
or Vectr d/dt statements), then t0 defaults to t0 = 0 unless another value is
specified. Starting at t = t0, the integration routine increments t by successive
constant or variable DT steps until t reaches the next data-sampling commu-
nication point (Fig. 1-2a). Within each integration step, numerical integration

8 Introduction to Dynamic-system Simulation

x

x (t)

DT COMINT

t0 t0+COMINT t0+2 COMINT t0+TMAX

t

FIGURE 1-2a. Time history of a simulation variable, showing sampling times t = t0, t0 +
COMINT, t0 + 2 COMINT, …, t0 + TMAX and some integration steps. In the figure, all integration
steps end on a sampling point. This is always true for variable-step integration rules, but fixed
integration steps DT may overshoot the sampling points by a small fraction of DT, as shown in
Figure 1-2b.



approximates continuous updating of the “continuous” model variables t, xi,
and yj. Each integration step usually requires more than one derivative call
executing the model equations (1-1) (Section 1-7; [10–18]).

In DYNAMIC program segments without differential equations, t0
defaults to t0 = 1 unless the experiment-protocol script specifies a different
value. All operations in such a DYNAMIC segment are sampled-data assign-
ments and execute at successive communication times [Eq. (1-2)], except for
assignments preceded by a SAMPLE m statement, where m is an integer >1.
Such assignments execute only at t = t0 and then at every mth communication
point. This permits multirate sampling. DESIRE admits only one SAMPLE
m statement per DYNAMIC program segment.

Differential-equation-solving DYNAMIC segments can also include sam-
pled-data assignments that execute only at the periodic sampling points (1-2).
Such assignments model sampled-data controllers and noise generators and
must be collected in sections following an OUT and/or SAMPLE m statement
at the end of the DYNAMIC program segment (Section 2-3).

DYNAMIC-segment input/output (e.g., to displays and listings) occurs at
the NN communication points (1-2), unless the system variable MM, which
defaults to 1, is set to an integer >1. In this case, input/output occurs at t = t0,
then at every MMth sampling point, and finally at t = t0 + TMAX. NN can thus
be set to a larger value than the desired number of input/output points. This
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FIGURE 1-2b. DESIRE output listings for variable-step integration and for fixed-step
integration. Parameters were deliberately chosen to exaggerate the fixed-DT effect.

Variable-step integration
NN = 6 | TMAX = 10 | initial DT = 0.01
t, x,X,y
0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
2.00000e+00 3.89418e-01 3.89418e-01 0.00000e+00
4.00000e+00 7.17356e-01 3.89418e-01 3.89418e-01
6.00000e+00 9.32039e-01 9.32039e-01 3.89418e-01
8.00000e+00 9.99574e-01 9.32039e-01 9.32039e-01
1.00000e+01 9.09298e-01 9.09298e-01 9.32039e-01

Fixed-step integration
NN = 6 | TMAX = 11 | initial DT = 0.01
t, x,X,y
0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
2.00000e+00 3.89419e-01 3.89419e-01 0.00000e+00
4.01000e+00 7.18748e-01 3.89419e-01 3.89419e-01
6.01000e+00 9.32762e-01 9.32762e-01 3.89419e-01
8.01000e+00 9.99513e-01 9.32762e-01 9.32762e-01
1.00100e+01 9.08463e-01 9.08463e-01 9.32762e-01



can provide fast sampling for pseudorandom noise (Section 5-4) and/or for
sampling switch and limiter functions (Sections 2-10 and 2-11). 

Some defined-variable assignments (1-1b) do not affect state variables but
only scale or modify model output. Such operations are not needed at every
derivative call but only at sampling points. The simulation will run faster if
such assignments are programmed as sampled-data operations following an
OUT statement.

1-7. Numerical Integration

(a) Euler Integration
The simplest procedure that approximates continuous updating of a state
variable x in successive integration steps is the explicit Euler integration rule
(see also Appendix)

xi(t + DT) = xi(t) + fi[t; x1(t), x2(t), ...; y1(t), y2(t),... ]DT

(i = 1, 2, …, n) (1-3)

where fi is the value of dx/dt calculated by the derivative call executing Eq.
(1-1) at the time t.

The integration routine loops until t reaches the next communication point
(1-2), where the solution is sampled for input/output and sampled-data oper-
ations. The simulation run terminates after accessing the last sample at t = t0 +
TMAX unless the run is stopped either by the user or by a programmed
termination (term) statement.

(b) Improved Integration Rules
The Euler integration rule [Eq. (1-3)] simply increments each state variable
by an amount proportional to its last computed derivative. This does not
approximate true integration well except for very small integration steps DT.
Improved updating requires multiple derivative calls per integration step DT
[10–18]. This can actually reduce the total number of derivative calls (the
main computing load of a simulation) required for a specified accuracy. In
particular:

• Multistep rules extrapolate updated values of the xi as polynomials based
on values of the xi and fi at several past times t – DT, t – 2DT, … .

• Runge–Kutta rules precompute two or more approximate derivative values
in the interval (t, t + DT) by Euler-type steps and use their weighted aver-
age for updating.

10 Introduction to Dynamic-system Simulation



Coefficients in such integration formulas are chosen so that polynomials
of degree N integrate exactly (Nth-order integration formula). 

Explicit integration rules such as Eq. (1-3) express future values xi(t + DT)
in terms of already computed past state-variable values. Implicit rules, such
as the implicit Euler rule,

xi(t + DT) = xi(t) + fi[t + DT; x1(t + DT), x2(t + DT), ...;

y1(t + DT), y2(t + DT), ...] DT (i = 1, 2, ..., n) (1-4)

require a program that solves the predictor equation (1-4) for xi(t + DT) at
each step. Implicit rules clearly involve more computation, but they may
admit larger DT values without numerical instability.

Variable-step integration adjusts integration step sizes to maintain accu-
racy estimates obtained by comparing various tentative updated solution val-
ues. This can save many steps. Figures 1-5, 7-7, and 7-8 show examples.
Numerical integration normally assumes integrands fi that are continuous and
differentiable within each integration step. Step-function inputs are accept-
able only at t = t0 and thereafter at the end of integration steps. Sections 2-10
to 2-12 discuss this problem in connection with models involving sampled-
data operations and switching functions.

1-8. Sampling Times and Integration Steps

The experiment protocol script selects the simulation runtime TMAX and the
number of samples NN needed for display, listings, and/or sampled-data
models. DESIRE returns an error message if an integration-step value DT
larger than COMINT = TMAX/(NN – 1) is selected, for the program must never
sample data within integration steps. Sampled-data output to displays or sam-
pled-data assignments is not well-defined at such times. Sampled-data input
within integration steps might make the numerical-integration routine invalid
(see also Sections 2-9 to 2-11). 

DESIRE’s variable-step integration routines automatically force the last
integration step in each communication interval to end precisely on one of the
user-selected communication points (1-2). An error message warns if the initial
DT value exceeds COMINT. Fixed-step integration routines, however, may
have to add a fraction of DT to each sampling time (1-2) to make sure that sam-
pling always occurs at the end of an integration step, as shown in Eq. (1-2b).
This does not cause errors in displays or listings, for each x(t) value is still asso-
ciated with its correct t value. But if output listings at specified periodic sam-
pling times (1-2) are needed, one must either use variable-step integration or set
DT to a very small integral fraction of COMINT.

How a Simulation Run Works 11



1-9. Sorting Defined-variable Assignments

DYNAMIC-segment operations (1-1) preceding an OUT or SAMPLE m state-
ment (if any) execute at every derivative call of the differential-equation-solv-
ing integration routine. Each derivative or defined-variable assignment uses the
value of t and the values of the state variables xi computed by the last deriva-
tive call. Derivative and defined-variable values for t = t0 are derived from the
initial state-variable values and t0 by an extra initial derivative call.

The defined-variable assignments (1-1b) must execute in the correct pro-
cedural order to derive each yj value from the state-variable values and t, pos-
sibly using already computed yi values. An out-of-order assignment would
incorrectly try to use defined-variable values from an earlier derivative call.
The state equations (1-1a) are normally programmed following the defined-
variable assignments (1-1b).

Conventional simulation programs such as ACSL© automatically sort the
defined-variable assignments so that they use only yi values already com-
puted during the current derivative call. If that is impossible due to an “alge-
braic loop,” the program returns an error message (sort error). DESIRE’s
more general program system does not sort statements automatically. But in
programs without subscripted variables or vectors (Chapter 3), DESIRE pre-
vents assignments to undefined variables, and thus algebraic loops, by return-
ing an error message (see also Section 3-5).3

EXAMPLES OF SIMPLE APPLICATIONS

1-10. Oscillators and Computer Displays

(a) A Linear Harmonic Oscillator
The complete small program in Figure 1-3 illustrates the main features of a
DESIRE simulation. The DYNAMIC program segment following the
DYNAMIC statement in Figure 1-3a defines our model. We have modeled a
simple damped harmonic oscillator or mass–spring–dashpot system with the
differential equations 

d/dt x = xdot | d/dt xdot = – ww * x – r * xdot

12 Introduction to Dynamic-system Simulation

3 Recursive assignments that input the assigned-to variable on the right-hand side, as in
y = y + x y = a * x1 + y * x2
do not ordinarily appear in differential-equation code. If they do, DESIRE does not flag them
with error messages but considers them as difference equations and assigns y the initial value 0
(Sections 2-1 and 2-2). 
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FIGURE 1-3a. This complete simulation program for a linear oscillator produces five simu-
lation runs with different values of the damping coefficient r.

A LINEAR OSCILLATOR
------------------------------------------------------------------------------
display N1 | display C8 | display Q
TMAX = 10 | DT = 0.0001 | NN = 10001
ww=0.8 | -- parameter value
x = 1 | -- initial value
-------------------------------------------------------------------------------
for i = 1 to 5 | -- set parameter values
r = 0.2 * i
drunr | display 2 | --  don't erase display
next

---------------------------------
DYNAMIC
--------------------------------
d/dt x = xdot | d/dt xdot = - ww * x - r * xdot
dispt x
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–0.5 0.0 0.5 1.0

FIGURE 1-3b. A phase-plane plot (xdot versus x) for the linear oscillator in Figure 1-3a.

We can add a display specification:

• dispt x, xdot displays the variables x and xdot versus the simulation
time t.

• dispxy x, xdot displays xdot versus x (phase-plane plot).

Model and display are exercised by the experiment-protocol script preced-
ing the DYNAMIC statement. Successive experiment-protocol lines specify

• display colors and curve thickness
• the runtime TMAX, the integration step DT, and the number NN of dis-

play points
• a model parameter ww
• the initial value of the state variable x

Initial values of time t and of the state variable xdot are not specified and
default to 0. The integration routine defaults to a fixed-step second-order
Runge–Kutta rule. 4

A simple experiment-protocol loop next calls for five simulation runs with
five different values of the oscillator damping parameter r. The resulting displays
are reproduced at the top of Figure 1-3a. Figure 1-3b shows a phase-plane plot.

4 The OPEN DESIRE reference manual in the book CD describes the complete program syn-
tax, default values of different simulation parameters, and operating instructions.
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(b) A Nonlinear Oscillator and Duffing’s Differential Equation
The differential equations

d/dt x = xdot | d/dt xdot = – x * x * x – a * xdot

model an oscillator with a nonlinear spring. Figures 1-4a and b show the
resulting time histories and a phase-plane plot obtained with a = 0.02. These
results are clearly different from the linear-oscillator response in Figure 1-3. 
If we drive the nonlinear oscillator with a sinusoidal voltage b cos(t), we
obtain Duffing’s differential-equation system

d/dt x = xdot | d/dt xdot = – x * x * x – a * xdot + b * cos(t)

Figure 1-4b shows solution displays and a program. The experiment-protocol
script is interesting in that it first calls a simulation run to exhibit the initial tran-
sient, then a long simulation run with the display turned off to establish steady-
state conditions, and finally a third run to display the steady-state solution.

Reference [9] discusses DESIRE programs for several other small physics
problems.

1-11. Space Vehicle Orbits—Variable-step Integration

The space-vehicle orbit simulation in Figure 1-5 assumes a fixed earth exert-
ing a simple inverse-square-law gravitational force on the satellite; effects of
planets, moons, and so on are neglected. With the sun at the coordinate ori-
gin, the inverse-square-law accelerations in the x and y directions are

(d/dt) xdot = – (a/R2) x/R (d/dt) | ydot = – (a/R2) y/R

+

0

–

+

0

–
0 40 80

x

xdot

→
scale = 1

–1.0 –0.5 0.0 0.5 1.0
scale = 1x,xdot vs. t x,xdot

FIGURE 1-4a. Time histories and phase-plane plot for the nonlinear oscillator modeled with
d/dt x = xdot | d/dt xdot = – x * x * x – a * xdot + b * cos(t).
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-- DUFFING'S DIFFERENTIAL EQUATION
----------------------------------------------------------------------------------------------------
scale = 10 | display N1 | display C8 | display Q
a = 0.099 | b = 15
TMAX = 30 | DT = 0.0002 | NN = 10000
X = 0.02
drun
write "type go to continue" | STOP
TMAX = 200 | display 0 | drun
write " note how solution becomes periodic!"
TMAX = 30 | display 1 | drun
--------------------------------------------------------------
DYNAMIC
--------------------------------------------------------------
d/dt x = xdot | d/dt xdot = - a * xdot - x * x * x + b * cos(t)
--
z = cos(t)
Z = 0.5 * (z + scale) | X = 0.5 * x | XDOT = 0.5 * (xdot - scale)
dispt Z, X, XDOT
FIGURE 1-4b. A simulation program for Duffing’s differential-equation system. The exper-
iment protocol first calls a simulation run demonstrating the initial transient, then a long run
without display to obtain a steady state (TMAX = 200, display 0), and finally a third run show-
ing the steady-state solution with the display turned on again (display 1). Phase-plane plots are
shown as well.
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FIGURE 1-5. Space-vehicle-orbit simulation program, orbit display, and stripchart time his-
tories of y and DT, showing the variable integration steps. For simplicity, the problem was
scaled so that all coefficients equal unity.

-- SPACE-VEHICLE-ORBIT SIMULATION
--------------------------------------------------------------------------------------------------
irule 15 | ERMAX = 0.0000001 | -- Gear-type integration
xdot = 1.4 | dot = 0.9 | x = 0.45 | y = 0
TMAX = 4 | DT = 0.0001 | NN = 10000
drun
--------------------------------------------------------------------------------------------------
DYNAMIC
--------------------------------------------------------------------------------------------------
rr = (x^2 + y^2)^(-1.5)
d/dt x = xdot | d/dt y = ydot
d/dt xdot = - x * rr | d/dt ydot = - y * rr
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With the program scaled so that the gravitational constant a = 1, we obtain
the simple differential-equation system5

rr = (x^2 + y^2)^(–1.5)
d/dt x = xdot | d/dt y = ydot
d/dt xdot = – x * rr | d/dt ydot = – y * rr

In Figure 1-5, an orbit starts around the sun to gain velocity for a trip to the
outer planets. This involves dramatic velocity changes, and the small integra-
tion steps required during the high-velocity portion of the trajectory would
slow the rest of the simulation. For this reason, such simulations employ an
implicit variable-step/variable-order integration rule (irule 15). The second
display in Figure 1-5 illustrates the integration-step changes.

1-12. A Population-dynamics Model

Typical population-dynamics models represent population counts by continu-
ous differential-equation state variables. There can be any number of popula-
tions, including subpopulations such as age and gender cohorts. Assignments
to the state derivatives describe interactions of different populations that may
breed, die, contract diseases, and fight or eat one another. Quite similar state-
equation systems also describe the reaction rates of “populations” of chemical
compounds or radioactive isotope mixtures (Section 7-1).

The classical example of a two-population predator–prey interaction is
modeled by the Volterra–Lotka differential equations

d/dt prey = (a1 – a4 * predator) * prey
d/dt predator = (– a2 + a3 * prey) * predator

The rate of increase of each population is proportional to the population
size. a1 is the difference between the natural birth and death rates of the prey
(say of a local population of rabbits). The prey has an additional death rate
a4 * predator proportional to the size of the predator population (say a popu-
lation of foxes). The predator population has a death rate a2, and its birth rate
a3 * prey is proportional to the prey population, which is its food supply.

5 This Cartesian-coordinate formulation is simpler than the polar-coordinate differential-
equation system:

x = r * cos(theta) | y = r * sin(theta) 
d/dt r = rdot | d/dt rdot = - GK/(r^2) + r * thdot^2
d/dt theta = thdot | d/dt thdot = 2 * rdot * thdot/r

used in References [1,2].



The simulation program in Figure 1-6 demonstrates how easily such
simple population-dynamics models can be modified. We added an extra
predator death rate b * predator to account for the effect of crowding as the
predator population increases and some predators kill one another. For b = 0
(no crowding) we obtain the classical periodic Volterra–Lotka solution: as
the rabbits breed, the foxes have more food; their number increases until
they seriously reduce the rabbit population and thus their food supply. The
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FIGURE 1-6. A population-dynamics simulation. For b = 0 the program implements the clas-
sical Volterra–Lotka differential equations, which produce steady-state periodic fluctuations of
the predator and prey populations. Positive values of b model an increased predator death rate
due to crowding, for example, by predator cannibalism. Predator and prey populations then
converge to constant steady-state values.

-- A PREDATOR-PREY PROBLEM
-- showing the effect of crowding
--------------------------------------------------------------------------------------------------
display N1 | display C8
TMAX = 2000 | DT = 0.01 | NN = 5000 | scale = 4000
a1 = 0.05 | a2 = 0.01 | a3 = 2.0E-05 | a4 = 1.0E-04
b = 0
prey = 2000 | predator = 200 | -- initial values
drunr
write " type go to see effect of predator crowding" 
STOP
b = 1.0E-05 | drun
--------------------------------------------------------------------------------------------------
DYNAMIC
--------------------------------------------------------------------------------------------------
d/dt prey = (a1 - a4 * predator) * prey
d/dt predator = (- a2 + a3 * prey - b * predator) * predator
dispt prey, predator
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number of rabbits then increases again, and the process repeats. But crowd-
ing (b > 0) limits the predator population, and both populations converge to
steady-state values.

1-13. Splicing Multiple Simulation Runs:
Billiard-ball Simulation

The DYNAMIC program segment in Figure 1-7 models a billiard ball as a point
(x, y) on a table bounded by elastic barriers at x = a, x = – a, y = b, and y = – b.
For x, y within the barriers, the only acceleration is due to constant friction in
the negative velocity direction, so that we program

d/dt x = xdot | d/dt y = ydot
d/dt xdot = – fric * xdot/v | d/dt ydot = – fric * ydot/v

where the velocity v is obtained with the defined-variable assignment

v = sqrt(xdot^2 + ydot^2)

A differential-equation model of barrier impacts would need to formulate
elastic and dissipative forces produced as the ball penetrates each barrier.
This is not only complicated but involves very large accelerations and thus
small integration steps. We neatly avoid these problems by terminating the
simulation run when a barrier is reached, that is, for |x| > a or |y| > b:

term abs(x) – a | term abs(y) – b

The DESIRE experiment-protocol script then starts a new simulation run with
the current position coordinates x, y and “reflected” velocity components
xdot, ydot:

if abs(x) > a then xdot = – R * xdot | ydot = R * ydot 
else proceed

if abs(y) > b then xdot = R * xdot | ydot = – R * ydot 
else proceed

where the restitution parameter R measures the energy absorbed by the
impact. A repeat loop continues this process until t > Tstop. The detailed
syntax of if/then/else and repeat/until statements in DESIRE experiment-
protocol scripts is found in the reference manual in the book CD. Figure 1-7
shows typical results as friction eventually brings the billiard ball to rest.
The display 2 statement keeps the program from erasing the display
between runs.
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FIGURE 1-7. Billiard-ball simulation. The experiment-protocol script splices multiple
simulation runs terminated by impact on one of four barriers at x = a, x = – a, y= b, y = – b.

-- BILLIARDS
--------------------------------------------------------------------------------------------------
NN = 2000 | DT = 0.01
TMAX = 20 | Tstop = 1000
-----
R = 0.9 | -- restitution parameter
fric = 0.0005 | -- acceleration due to friction
a = 1 | ^ b = 0.5
xdot = 0.15 | ydot = 0.035
repeat

drun | display 2 | -- don't erase the display
if abs(x) > a then xdot = - R * xdot | ydot = R * ydot

else proceed
if abs(y) > b then xdot = R * xdot | ydot = - R * ydot

else proceed
until t > Tstop

-------------------
DYNAMIC
--------------------------------------------------------------------------------------------------
v = sqrt(xdot^2 + ydot^2)
d/dt x = xdot | d/dt y = ydot
d/dt xdot = - fric * xdot/v | d/dt ydot = - fric * ydot/v
term abs(x) - a | term abs(y) - b
term t - Tstop
dispxy x,y
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Similar run-splicing experiment-protocol scripts are useful in many other
applications with radical switching operations, including simulations of elec-
tronic switching circuits. Reference [9] discusses several examples, including
the classical bouncing-ball simulation and EUROSIM’s peg-and-pendulum
and switched-amplifier benchmarks.6

CONTROL-SYSTEM EXAMPLES

1-14. An Electrical Servomechanism with Motor Field Delay 
and Saturation

The motor of an electrical servomechanism drives a load so that the output
displacement x follows a given input u = u(t), typically after an initial tran-
sient (Fig. 1-8). The servo controller produces the motor-control voltage volt-
age as a function of the measured position error error = x – u and the rate of
change xdot = dx/dt continuously measured by a tachometer on the motor
shaft.

Figure 1-8 shows a simulation program. The sinusoidal servo input u = A *
cos(w * t) reduces to a step input for w = 0. We model a simple linear controller
with

voltage = – k * error – r * xdot (1-5)

Some nonlinear controllers will be discussed in Chapter 7. The controller
gain k and damping coefficient r are positive controller parameters. As is well
known, high gain and/or low damping speed the servo response but can cause
output overshoot or even oscillations and instability.

The motor voltage (1-5) produces a field current I with a field-buildup
delay modeled with

d/dt I = – B * I + g1 * voltage (1-6)

The resulting motor torque is limited by motor-field saturation modeled
with the soft-limiting hyperbolic-tangent function:

torque = maxtrq * tanh(g2 * I/maxtrq) (1-7)

6 Reference [9] used an earlier version of DESIRE.
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FIGURE 1-8. Complete simulation program and stripchart display for an electrical servo
with motor-field delay, field saturation, and sinusoidal input u = A * cos(w * t). You can also
set w = 0 to obtain the step response of the servomechanism.

SERVOMECHANISM SIMULATION  
--------------------------------------------------------------------------------------------------
scale = 2    |    display N1  |  display C8  |  --  display
TMAX = 2.5    |    DT = 0.0001    |    NN = 10000
--------------------------------------------------------------------------------------------------
A = 0.1    |    w = 1.2    | --   ---    signal parameters
B = 100 | maxtrq = 1.5 | --  motor parameters
g1 = 10000 | g2 = 1 |   R = 0.6
k = 40 |  r = 2 | --     --  controllerparameters
--
drun
---------------------------------------------------------------------------------
DYNAMIC
---------------------------------------------------------------------------------
u = A * cos(w * t) |  --                input 
error = x - u |  --              servo error
--------------------------------------------------------------------------------------------------
voltage = - k * error - r * xdot |  --    motor voltage
d/dt I = - B * I + g1 * voltage |  --  motor field delay
torque = maxtrq * tanh(g2 * V/maxtrq)
d/dt x = xdot |  d/dt xdot = torque-R * xdot
--
--------------------------------------  scaled stripchart display
X = 5 * x + 0.5 * scale |  U = 5 * (u + scale)
ERROR = 4 * error |  TORQUE = 0.25 * torque - 0.5 * scale
dispt X,U,TORQUE,ERROR



The response of motor, gears, and load to the torque satisfies the differen-
tial equations of motion

d/dt x = xdot 
d/dt xdot = (torque – R * xdot)/M (1-8)

where M represents the inertia of motor, gears, and load, and R > 0 is a motor
damping parameter. For convenience, torque and R are scaled so that M = 1.

The simulation program in Figure 1-8 sets system parameters and models
the servomechanism with two defined-variable assignments (1-5) and (1-8) and
three state differential equations (1-6) and (1-9). Control-system designers can
then exercise the resulting “live mathematical model” to observe servo input,
output, error, and motor torque while they adjust controller parameters and
motor characteristics. Desirable parameter combinations must, in some sense,
produce small servo errors. We can use different test inputs u(t) similar to
inputs for the intended application, for example, step inputs, ramps, sinusoids
(or noise, as in Section 5-8). Simulations must be repeated with different input
amplitudes, since the field saturation makes our model nonlinear.

Such computer-aided experiments provide some intuitive feel for the control
problem and may quickly indicate instability or design errors. For objective deci-
sion-making, though, we must define and compute numerical error measures.
These are typically functionals determined by the entire time history of the servo
error x(t) – u(t) for a given input u(t). One can, for instance, record the maximum
of the absolute error or the squared error, as in Section 2-16c. More commonly
used error measures are integrals over the error time history. We define such
measures as extra state variables with zero initial values, for instance,

d/dt IAE = abs(x – u) (IAE, integral absolute error)
d/dt ISE = (x – u)2 (ISE, integral squared error)
d/dt ITAE = t * abs(x – u)
d/dt ISTAE = t2 * abs(x – u)

where ISE/TMAX is the mean squared error.
We can now vary the design parameters until selected error measures meet

acceptance limits, or until an error measure is as small as possible. We may also
want to study our control system’s effect on the controlled system, for example,
with a view to minimizing excessive space-vehicle accelerations. Parameter-
influence studies are discussed in more detail in Sections 4-1 to 4-3. 

1-15. Control-system Frequency Response

Simulation experiments can explore control-system frequency response
with successive different sinusoidal inputs. For linear control systems, one
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can instead simulate the system impulse response and program an experi-
ment-protocol script to produce its Fourier transform [9]. DESIRE experi-
ment-protocol scripts can perform fast Fourier transforms and work with
complex numbers for frequency-response and root-locus plots [9]. The book
CD shows a number of simple examples.

1-16. Simulation of a Simple Guided Missile

(a) A Guided Torpedo
Figure 1-9a shows a missile pursuing a target [19–22]. The problem is scaled
so that TMAX = 1, and distances are in 1000-foot units. x and y are rectangu-
lar Cartesian coordinates of the missile center of gravity. u and v are velocity
components along and perpendicular to the torpedo longitudinal axis. phi is
the flight path angle, and rudder is the control-surface deflection. The target
proceeds on a straight course at constant velocity. 

Our particular missile will be a guided torpedo. In water, drag and side forces
are approximately proportional to the square u2 of u. The accelerations along
and perpendicular to the torpedo’s longitudinal axis are then approximated by

(d/dt) u = (thrust – drag)/mass = UT a2 * u2

(d/dt) v = b1 * u2 sin γ2 + b2 * u * phidot + b3 * v * rudder 

The yaw-rotation equations are

(d/dt) phi = phidot 
(d/dt) phidot = c1 * u2 * sin γ + c2 * u * phidot + c3 * u2 * rudder

where c1 and c2 are hydrodynamic- and damping-moment coefficients, and
c3 is the rudder steering-moment coefficient, all divided by the torpedo
moment of inertia.

Weathercock stability ensures that the angle of attack g2 between longitu-
dinal axis and velocity vector is so small that

sin γ ≈ tan γ2 ≈ v/u

and the equations of motion for our DYNAMIC program segment become

(d/dt) u = UT – a2 * u2

(d/dt) v = u * (b1 * v + b2 * phidot + b3 * rudder)
(d/dt) phidot = u * (c1 * v + c2 * phidot + c3 * rudder)
(d/dt) phi = phidot
(d/dt) x = u * cos(phi) – v * sin(phi)
(d/dt) y = u * sin(phi) + v * cos(phi)



The target angle psi is the angle between the horizontal line in Figure 1-9a
and a line joining the torpedo and target. The target coordinates xt, yt, the
squared distance-to-target dd, and the target angle psi are given by

xt = xt0 + vxt * t yt = yt0 + vyt * t
psi = arctan((yt – y)/(xt – x)) dd = (x – xt)2 + (y – yt)2

We aim the torpedo at the target by making the initial value of phi equal to
psi. The initial values of u and v are set to 0.

We control the rudder to keep the torpedo turned toward the target. Such
simple pursuit guidance works only for low target speeds unless initially one is
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FIGURE 1-9a. A guided torpedo tracking a constant-speed target. The target angle psi, not
shown here, is the angle between the horizontal line and the line joining the torpedo and target.
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FIGURE 1-9b. Time histories of the torpedo rudder deflection, the error phi-psi, the angle
phi and the squared distance dd to the target (see text).
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-- GUIDED-TORPEDO SIMULATION
-- (x, y) is torpedo, (xt, yt) is target
--------------------------------------------------------------------------------------------------
irule 4 | ERMAX = 0.1 | -- variable-step RK4
display N1 | display C8 | display R | scale = 2
DT = 0.00001 | TMAX = 2 | NN = 20000
--------------------------------------------------------------------------------------------------

UC = 8 | -- torpedo parameters
a1 = 0.8155 | a2 = 0.8155
UT = a1 * UC^2
b1 = - 15.701 | b2 = - 0.23229 | b3 = 0
c1 = - 303.801 | c2 = - 44.866 | c3 = 500
--------
gain = 300 | rumax = 0.25 | -- control parameters
RR = 0.01 | rr = RR^2 | -- distance to target
DD = 100 * rr
--------
vxt = 0.1 | vyt = - 0.5 | -- target velocity vector
x = - 2 | y = 0 | -- initial values
xt0 = 1 | yt0 = 2
rudder = 0
phi = atan2(yt0 - y, xt0 - x) | -- first aim at target
drunr
DYNAMIC
--------------------------------------------------------------------------------------------------
xt = xt0 + vxt * t | yt = yt0 + vyt * t | -- target
psi = atan2(yt - y, xt - x) | -- target angle
dd = (x - xt)^2 + (y - yt)^2 | -- squared distance
------------------------
d/dt u = UT - a2 * u^2 | -- state equations
d/dt v = u * (b1 * v + b2 * phidot + b3 * rudder)
d/dt phidot = u * (c1 * v + c2 * phidot + c3 * rudder)
d/dt phi = phidot
d/dt x = u * cos(phi) - v * sin(phi)
d/dt y = u * sin(phi) + v * cos(phi)
--
error = (phi-psi) | -- control 
step | -- this is needed for sat()
rudder = - rumax * sat(gain * error)
--
term rr - dd | -- terminate when close
--------------------------------------------------------------------------------------------------
DISPXY x, y, xt, yt | -- draw 2 xy plots

FIGURE 1-9c. Complete program for the guided-torpedo simulation.



more or less directly behind the target (Fig. 1-10). More advanced guidance
systems are discussed in Reference [18]. 

Simple sonar guidance senses psi and dd and actuates the control-surface
deflection rudder to implement

error = (phi – psi) rudder = – rumax * sat(gain*error)

We shall increase the controller gain as the torpedo approaches the target by
setting

gain = gain0 + A * t

We terminate the run when the torpedo gets close to the target, where psi
tends to change rapidly. The second equation ensures that the absolute value
of the control-surface deflection does not exceed rumax.

(b) The Complete Simulation Program
Figure 1-9c lists the complete guided-torpedo program used to produce the
displays in Figures 1-9a and b. The experiment protocol first selects an inte-
gration routine, display colors, and display scale, and then sets the initial
value of the integration step DT, the simulation runtime TMAX, and the num-
ber NN of display sampling points. 

The experiment-protocol script next sets torpedo parameters, initial target
coordinates, and target-velocity components. Finally, we specify initial val-
ues for the state variables x, y, and phi. The initial values of the remaining
state variables u, v, and phidot are allowed to default to zero.
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FIGURE 1-10. Multirun studies showing the results of torpedo shots at (a) low-speed and (b)
high-speed targets appearing in different directions. It is a well-known fact [19,20] that the primi-
tive pursuit-guidance scheme described in Section 1-16 can acquire a high-speed target only when
the target track is ahead of the missile or behind it.



The DYNAMIC program segment following the DYNAMIC line begins with
the defined-variable assignments. We specify the target coordinates xt, yt as
functions of time and then derive the target angle psi and the controller variables
error and rudder. The DYNAMIC segment next lists the state differential equa-
tions and a termination command

term rr – dd

which stops the simulation when the missile closes to within RR = sqrt(rr). If
it does not, our shot has failed, and the run continues to t = TMAX. The simu-
lated rudder deflection rudder is bounded between – rumax and rumax with
the limiter function sat() (Section 2-8a), which follows a step statement to
ensure correct integration (Section 2-11).

Finally, the display command DISPXY x, y, xt, yt calls for simultaneous
displays of the missile and target trajectories (y versus x and yt versus xt).
Alternative display statements can plot time histories of phi, psi, error,
and rudder (Fig. 1-9b). The simulation program can be loaded from a file
or an editor window. Solution displays will then appear when a run
command is typed.

WHAT DO WE DO WITH ALL THIS?

1-17. Simulation Studies in the Real World: A Word of Caution

Simulations such as our torpedo example provide some insight and are nice
for teaching and learning. But engineering-design simulation requires much
more than solving textbook problems. In fact, the main result of a few model
runs will be questions rather than answers: one begins to see how much more
there is to know. Here are just a few questions that might come up:

• Can the missile acquire the target from different directions?
• What happens if the target speed increases?

• Can the design be improved with different vehicle or control-system
parameters?

• What parameter-value tolerances are acceptable?

We shall clearly require multirun simulation studies. Figure 1-10 shows a
simple example, but in practice we shall have to investigate combinations of
problems such as those listed. It follows that even a simple problem such as
our torpedo can require over a thousand simulation runs. A larger project can
generate an enormous volume of simulation data. Intelligent and efficient
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evaluation of such results is an art rather than a science. It is the specific pur-
pose of this book to show techniques that generate thousands of experiments
in minutes and display results in various ways.

Computer simulation is convenient, and dramatically cheaper than real
experiments. But engineering-design models are meaningless unless they
can be validated by actual physical experiments. Very expensive prototype
failures have been traced to oversimplified models (neglecting, for
instance, missile fuselage bending or fuel sloshing). Simulation studies try
to anticipate design problems and select test conditions that will minimize
the number of expensive tests. 
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2
Models with Difference Equations,
Limiters, and Switches

SAMPLED-DATA ASSIGNMENTS AND DIFFERENCE EQUATIONS

2-1. Sampled-data Difference Equation Systems1

Sampled-data assignments model applications such as digital filters, controllers,
and neural networks. We recall that sampled-data assignments execute at the NN
sampling points

t = t0, t0 + COMINT, t0 + 2 COMINT, … , t0 + (NN – 1)COMINT = t0 + TMAX

with

COMINT = TMAX/(NN – 1)

(Section 1-6). At each step, a sampled-data assignment input not already com-
puted by a preceding assignment takes the value calculated at the last prior
sampling point, starting with a given initial value. It follows that not all recur-
sive sampled-data assignments are “algebraic loops” resulting from sort
errors, as would be the case for continuous-variable assignments. Recursive

Advanced Dynamic-system Simulation: Model-replication Techniques 
and Monte Carlo Simulation By Granino A. Korn
Copyright © 2007 by John Wiley & Sons, Inc.

1 Difference equations relating differential-equation-system variables (“continuous” or “analog”
variables) will be treated in Section 2-16.



sampled-data assignments represent a difference-equation system whose solu-
tion is a set of successive output values generated by recursive substitution,
starting with given initial values. 

A differential-equation system such as Eq. (1-1) makes it obvious which
variables are state variables and need initial values. This is not as easy in the
case of difference-equation systems. We must draw on real knowledge of the
model context to identify state variables and then execute sampled-data
assignments into meaningful procedural order; otherwise they may mix past
and present variable values into garbage.

Difference-equation state variables q1, q2, … typically represent current
and past values of significant model quantities z1, z2, …; for instance,

q1 = z1(t), q2 = z1(t – COMINT), q3 = z1(t – 2 COMINT)

q4 = z2(t), q5 = z2(t – COMINT)

A difference-equation system of order N relates current values (i.e., values at
the time t) of N state variables to past values of these state variables (i.e., values
at the time t – COMINT).

Just as in the case of a differential-equation system (1-1), we begin by
computing various intermediate results and output quantities as functions of
previously assigned state-variable values qi. Current values of such defined
variables are produced by defined-variable assignments

pj = Gj(t; q1, q2, … , qN; p1, p2, … ) (j = 1, 2, ... ) (2-1a)

Note that defined-variable assignments relate current pj values on the left-
hand side to past values of the state variables qi and to already computed cur-
rent values of other defined variables pj. This means that the defined-variable
assignments (2-1a) must be properly sorted into a procedural order that pro-
duces successive pj values without algebraic loops, just as in Section 1-9.2

Following the defined-variable assignments (2-1a), we compute the current
values Qi of our state variables qi with N difference-equation assignments

Qi = Fi(t; q1, q2, … ,qN; p1, p2, … ) (i = 1, 2, … , N) (2-1b)

The functions on the right-hand side again use past values of the qis and cur-
rent values of the pj.
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2 When there are no vector operations or subscripted variables, DESIRE again automatically
prevents sort errors with “undefined variable” messages. When there are vector operations, we
proceed as in Section 1-9.
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Following the assignments (2-1a) and (2-1b), we must set new state-
variable values qi for the next sampling time with N updating assignments

qi = Qi (i = 1, 2, … , N) (2-1c)

To summarize, a complete difference-equation program (2-1) starts with
sorted defined-variable assignments (2-1a). These are followed by differ-
ence-equation assignments (2-1b) and then updating assignments (2-1c). We
execute all these assignments, in that order, at successive sampling points.
This solves the difference-equation system by recursive substitution of new
qi values, starting with given initial values. Figure 2-1 shows an example (see
also Fig. 2-4).

DESIRE normally does not provide default initial values for unsubscripted
difference-equation state variables. Their initial values qi = qi(t0 – COMINT)
must be explicitly assigned by the experiment protocol, even if they equal 0.
Section 2-2 deals with an exception to this rule.

2-2. “Incremental”Form of Simple Difference Equations

DESIRE automatically recognizes simple recursive assignments such as

qi = Fi(t; qi) (2-2)

as difference equations (see also Section 2-16). The program then treats qi as
a difference-equation state variable, and automatically assigns qi the default
initial value qi(t0 – COMINT) = 0 (even though t starts at t = t0). qi is updated
by recursive substitutions. In particular, qi = qi + fi(t; qi) produces qi as a sum
of its initial value and successive increments fi (see also Section 4-6c). If the
experiment protocol has assigned qi a nonzero initial value, say with qi = 5,
this is correctly treated as qi(t0 – COMINT).

The assignment (2-2) relates current qi values to past values without an
updating assignment (2-1c). But when there is more than one difference
equation, this scheme does not work if Fi depends, directly or indirectly, on a
state variable other than qi. The solution then depends on the order in which
the recursive assignments are evaluated and is likely to be garbage. This is
precisely why we wrote each difference equation (2-1b) as an assignment to
a “predictor variable” Qi rather than to qi. It is always safe to rewrite differ-
ence equations such as (2-2) as

Qi = Fi(t; q1, q2, …; p1, p2, …)

and to program updating assignments qi = Qi following the difference equa-
tions as in Section 2-1.



2-3. Combining Differential Equations and 
Sampled-data Operations

As noted in Chapter 1, a DYNAMIC program segment can contain both dif-
ferential-equation code and sampled-data code. Examples are simulations of
digital controllers for analog plants (Sections 2-6 and 2-7) and differential-
equation problems with pseudorandom noise inputs (Section 5-3). In such
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0

–
0

scale =4 q1 vs. t
400 800→

NN = 801
a = 1.8 | b = - 0.90
t = 0 | q1 = 0 | q2 = 1
drun
------------------------------------------------------------------
DYNAMIC
------------------------------------------------------------------
SAMPLE 10 | -- for better display only
Q1 = q2 | Q2 = a*q2 + b * q1 | -- difference eqs.
q1 = Q1 | q2 = Q2 | -- update state vrbls.

FIGURE 2-1. Difference-equation program and display of q1 versus t for a digital bandpass
filter processing the time series q(0), q(1), q(2), … (t0 = 0, COMINT = 1). SAMPLE 10 was used
only to get a better display. Digital filters and controllers are important applications of differ-
ence equations.



programs, sampled-data assignments follow an OUT or SAMPLE m statement
at the end of the differential-equation code, so that they execute only at peri-
odic sampling times. As discussed in Section 1-8, properly designed integra-
tion routines admit sampling only at t = t0 and at the end of integration steps.

Variables fed from a differential-equation system to a difference-equation
system are defined variables. But all sampled-data inputs to differential-equation
systems are state variables,3 for they relate past and present. In derivative calls
between sampling points, these sampled-data inputs “hold” values assigned at
the preceding sampling point. The experiment protocol must assign initial val-
ues to such sample-hold inputs. Otherwise, they will be flagged as undefined
variables at t = t0. In summary,

• Sampled-data assignments read inputs from the differential-equation
section (simulated “continuous” or “analog” variables) computed at the
current sampling time. 

• In the “continuous” differential-equation section, the current value of each
sampled-data input was produced at the preceding sampling time and stays
constant until it is updated at the next sampling time. This models a sample-
hold operation.

2-4. A Simple Example

Figure 2-2 illustrates the time relationships of data samples fed from a differen-
tial-equation system (“analog”) system to a sampled-data system (“digital” sys-
tem) and back to the differential-equation system. Note that the analog input y
equals the preceding sample of the sampled-data variable q. Figure 2-2a demon-
strates the sample/hold action when y = q is updated following a SAMPLE m
statement with m = 10.4
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FIGURE 2-2. Data exchanges between a differential-equation (“analog”) system and a sim-
ple sampled-data (“digital”) system. There are no difference equations; q is a sample-hold
state variable, not a difference-equation state variable. Graphic display (a) and output listing
(b) were produced by the small DYNAMIC program segment in (c) for different values of NN
and m. The experiment protocol has set x = 0 by default and explicitly assigned q(0) = 0. Note
that the “analog” input y reads the q value from the preceding sampling step and is, therefore,
always one step behind the current sampled-data result.

3 Such “sample/hold inputs” to a differential equation system are state variables even if they
are not difference-equation state variables.
4 It is not possible to see the sample/hold action for m = 1, for it would occur only between
sampling points.
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y

x

0

–
0 5 10→

scale = 1 x,y vs. t

TMAX = 10 | NN = 101 | m = 10

t x q y

0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000
2.00000e+000 3.89418e-001 3.89418e-001 0.00000e+000

(b) 4.00000e+000 7.17356e-001 7.17356e-001 3.89418e-001
6.00000e+000 9.32039e-001 9.32039e-001 7.17356e-001
8.00000e+000 9.99574e-001 9.99574e-001 9.32039e-001
1.00000e+001 9.09298e-001 9.09298e-001 9.99574e-001

TMAX = 10 | NN = 6 | m = 1

------------------------------------------------------------------------------------
DYNAMIC
-------------------------------------------------------------------------------------
d/dt x = w * xdot | d/dt xdot = - w * x | -- signal

(c) y = q | -- D/A converter with sample/hold action,
--                                  holds the PRECEDING sample of q
SAMPLE m
q = x | -- A/D converter, reads CURRENT "analog" input x

(a)



2-5. Initializing and Resetting Sampled-data Variables

Unsubscripted sampled-data state variables and all sample-hold inputs to a
differential equation system must be explicitly initialized by the experiment
protocol to prevent “undefined variable” errors at t = t0 (see Section 2-2 for
special exceptions). Subscripted variables are necessarily defined by array
declarations (Section 3-1) and default to 0.

Programmed and command-mode reset and drunr statements reset the
system variables t and DT and all differential-equation state variables to their
initial values at the start of the current simulation run. But reset and drunr do
not reset difference-equation state variables or sampled-data inputs to differ-
ential-equation systems. These must be explicitly reset in the experiment-
protocol script, perhaps with a named procedure collecting all such reset
operations.

EXAMPLES OF MIXED CONTINUOUS/SAMPLED-DATA SYSTEMS

2-6. The Guided Torpedo with Digital Control

As a simple example, Figure 2-3 shows how the guided torpedo program of
Section 1-16a can be modified to incorporate digital control. The controller
operations

error = (phi – psi) * swtch(dd – DD)
gain = gain0 + 800 * t
rudder = – rumax * sat(gain * error)

become sampled-data assignments5 programmed following a SAMPLE m
statement at the end of the DYNAMIC program segment. No difference equa-
tions are used. The first sampled-data assignment models analog-to-digital
conversion of the continuous (analog) variables phi and psi. The other assign-
ments represent controller operation and digital-to-analog conversion; error
and gain are intermediate results. The simulated controller feeds its output
rudder to the differential-equation system as a sample-hold input. rudder
must be explicitly initialized at t = 0 (Section 2-3).

The controller sampling rate is (NN – 1)/(m * TMAX). With sufficiently large
sampling rates, the simulation results are similar to those in Section 1-16
(Figure 2-3). 
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5 Note that swtch(dd – DD) and sat(gain * error) appear in sampled-data assignments, so that they
switch only at sampling times and cannot hurt numerical integration (Sections 2-9 and 2-10).
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+

0

–
0 0.15 → 0.3

scale = 1.5

rudder
dd

error

phi

rudder×2,err×50,DD×10,phi×2 vs. t

----------------------------------------------------------------------
DYNAMIC
----------------------------------------------------------------------
xt = xt0 + vxt * t | yt = yt0 + vyt * t | -- target
psi = atan2(yt - y,xt-x) | -- target angle
dd = (x - xt)^2 + (y - yt)^2 | -- squared distance
--
d/dt u = UT - a2 * u^2 | - state equations
d/dt v = u * (b1 * v + b2 * phidot + b3 * rudder)
d/dt phidot = u * (c1 * v + c2 * phidot + c3 * rudder)
d/dt phi = phidot
d/dt x = u * cos(phi) - v * sin(phi)
d/dt y = u * sin(phi) + v * cos(phi)
--
term rr - dd
---------------------------------
SAMPLE m |  --   digital controller
error = (phi - psi) * swtch(dd - DD)
gain = gain0 + 800 * t
rudder = - rumax * sat(gain * error)

FIGURE 2-3. Time-history display and DYNAMIC program segment for the digitally con-
trolled torpedo (see also Fig. 1-9). Sampled-data operations are programmed following the
SAMPLE m statement that sets the sampling rate. The sampled-data variable rudder must be
initialized by the experiment protocol.



2-7. Simulation of a Plant with a Digital PID Controller

The simple digital controller in Section 2-6 involved no recursive sampled-
data assignments, but we shall next study a true difference-equation con-
troller. The program in Figure 2-4 models digital PID (proportional/integral/
derivative) control [1] of an analog plant represented by differential equations
similar to those for the servo in Section 1-14, that is, 

torque = maxtrq * tanh(y/maxtrq) 
d/dt c = cdot d/dt cdot = 10 * torque – R * cdot

Torque saturation is again represented by the tanh function. The program
neglects analog-to-digital converter quantization, but this could be imple-
mented as shown in Section 2-15.

The simulated digital controller samples the analog input u and the analog
output c (this models analog-to-digital conversion) to produce the sampled-
data variable error. For simplicity, we specified a constant input u = 0.7. The
controller then computes the sampled-data error measure error = c – u. To
produce the controller output

y = B0 * q1 + B1 * q2 + B2 * (q2 – error)

we must solve the difference-equation system

Q1 = q2 Q2 = q2 – error
q1 = Q1 q2 = Q2

for the state variables q1, q2.6 y, q1, and q2 must be initialized by the exper-
iment protocol.

An implied digital-to-analog converter converts y to an analog voltage that
controls the motor torque torque. In the DYNAMIC program segment of
Figure 2-4, the simulated digital controller (lines following the SAMPLE m
statement) updates the state difference equations at every mth communication
point, exactly as a real digital controller would. The sample rate is 

(NN – 1)/(m * TMAX) = 1/TS.
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6 Reference 1 shows that the digital PID-controller has the z-transfer function [1]

G(z) ≡ KP + (KI + TS) + ≡

where KP, KI, and KD are the proportional, derivative, and integral gain parameters. Our pro-
gram saves computing time by precomputing the PID parameters

B0 = KD/TS, B1 = – KP + 0.5 * KI * TS - 2 * B, B2 = KP + 0.5 * KI * TS + B0

Az2 + Bz + C
��

z(z–1)
KD(z–1)
�

TSz
z + 1
�
z – 1

1
�
2
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scale = 1 c,TORQUE,error vs. t

-- "ANALOG" PLANT WITH A DIGITAL PID CONTROLLER
-----------------------------------------------------------------------------------------
TMAX = 2.5 |  DT = 0.001 |  NN = 700 |  display N1 |  display C8
----------------------------------------------------------------------------------------
TS = 0.05  |  --                     the simulated sampling rate is 1/TS
m = TS * (NN - 1)/TMAX |  --        display points per sample
--------------------------------------------
u = 0.7  |  --    step input 
maxtrq = 0.8 |   R = 3 |  --          motor parameters 
---------------------------------------------------------------------
--                           initial t , c, cdot  all default to 0
x1 = 0 | x2 = 0 
y = 0   | --                                       must initialize y
--                             precompute P.I.D. parameters
KP = 3 |  KI = 1.2 |  KD = 0.2
B0 = KD/TS  |  B1 = - KP + 0.5 * KI * TS - 2 * KD/TS
B2 = KP + 0.5 * KI * TS + KD/TS
--
drun
---------------------------------------------------------------------------------------
DYNAMIC
---------------------------------------------------------------------------------------
torque = maxtrq * tanh(y/maxtrq)  | -- analog plant
d/dt c = cdot   |   d/dt cdot = 10 * torque - R * cdot 
--------------------------------------------------------------------------------------
SAMPLE m  |  --                                                 digital controller
error = c - u  
y = B0 * q1 + B1 * q2 + B2 *(q2 -  error)  |  --  controller output
Q1 = q2  | Q2 = q2 -  error  | --                   difference equations
q1 = Q1  |  q2 = Q2  |  --                           update state variables

FIGURE 2-4. Simulation of an “analog” plant with a digital controller. Display commands
are not shown.



MODELING LIMITERS AND SWITCHES

2-8. Limiters, Switches, and Comparators

The piecewise-linear library functions listed in Figure 2-5 work both in
experiment-protocol scripts and DYNAMIC program segments. These func-
tions are used in many engineering applications (see also [2–4]).

(a) Limiter Functions
lim(x) is a simple unit-gain limiter or half-wave rectifier (see also Section 2-13).
The unit-gain saturation limiter sat(x) limits its output between –1 and 1, and
SAT(x) limits its output between 0 and 1. More general unit-gain saturation lim-
iters are obtained with

y = a * sat(x/a) (limits between – a and a > 0) (2-3)

y = lim(x – min) – lim(x – max) (limits between min and max > min) (2-4)

It is possible to approximate any reasonable continuous function of x as a
sum of simple limiter functions,

a0 + a1 * lim(x – x1) + a2 * lim(x – x2) + … (2-5)

(b) Switching Functions and Comparators
The switch function swtch(x – a) in Figure 2-5b switches between 0 and 1
when x = a (see also Section 2-16). Combining two swtch functions,

u = swtch(t – t1) – swtch(t – t2) (t1 < t2) (2-6)

we obtain a unit-amplitude pulse u(t) starting at t = t1 and ending at t = t2. y
= v * u models the result of switching the function v(t) on at t = t1 and off at
t = t2.

Referring again to Figure 2-5b, swtch(x) and sgn(x) model the transfer
characteristics of comparators that switch their output when their input x
crosses zero. The useful function

y = minus + (plus – minus) * swtch(x – a) (2-7)

models a relay comparator or function switch. Its output y switches between
the values minus and plus when the input variable x crosses the comparison
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FIGURE 2-5a. Limiter functions.



level a. a, minus, and plus can be variable expressions. A relay comparator
can also be modeled with the library function

comp(x, minus, plus) = � plus (x > 0)
minus (x <– 0)

The library function deadc(x) represents a comparator with a deadspace
between x = –1 and x = 1. The function

y = minus * swtch(a – x – delta) + plus * swtch(x – a – delta) (2-8)

implements a relay comparator with the symmetrical deadspace ±delta.
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FIGURE 2-5b. Switching functions.



2-9. Numerical Integration of Switch and Limiter Outputs,
Event Prediction, and Display Problems

Switch-function outputs are discontinuous step functions, and limiter out-
puts have discontinuous derivatives.7 Numerical-integration steps must not
cross such discontinuities, which violate the smooth-interpolation assump-
tions underlying all higher-order integration formulas. We already encoun-
tered the same problem with sampled-data integrands and solved it by
providing integration routines that never step across the periodic sampling
points (Section 1-8). But switch and limiter functions used in differential-
equation problems will not, in general, switch at known periodic sampling
times. To ensure correct numerical integration we must, therefore, modify
either integration steps or switching times.

Early simulation projects simply reduced the integration step size DT, typ-
ically with a variable-step Runge–Kutta routine, and then ignored the prob-
lem. This often works (perhaps because models of stable control systems
tend to reduce computing errors), but it is not the way to get reliable results.
In particular, variable-step integration may fail at the switching points as it
tries to decrease the integration-step size. Models requiring frequent switch-
ing (e.g., models of solid-state ac motor controllers) are especially vulnerable
[5,6]. The situation is worse when simulations of mechanical and electrical
systems involve several switching devices. 

Two alternative methods can produce correct integration:

1. Some simulation programs predict the time Tevent when a function
such as swtch(x) will switch by extrapolating future values of x from a
number of past values. The integration routine is then designed to force
the nearest integration step to end at t = Tevent. The software must
select the first function likely to switch, and the extrapolation formula
must be as accurate as the integration rule [6–9].

2. We can execute program lines containing switch and limiter functions
only at the end of integration steps (Section 2-11). This involves a com-
promise between switching-time resolution and integration step size;
small integration steps slow down the computation.

The following sections describe two simple schemes for correct integra-
tion, but another problem remains. Computer displays cannot correctly dis-
play switched functions that switch more than once between display
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7 Sometimes one can replace switch or limiter functions with smooth approximations. One
can, for instance, approximate sat(x) with tanh(a * x). Note that this technique also requires
small integration steps.



sampling points. The only way to avoid multiple switching between display
points is to increase the number of display points NN (or NN/MM, Section
1-6) and thus the minimum number of integration steps (Section 1-8). This
display problem, though, does not affect computing accuracy, and continuous
functions will display correctly.

2-10. Using Sampled-data Assignments

Since DESIRE integration routines never step across the periodic sampling
points (1-2), all is well when switch and limiter operations are sampled-data
assignments following an OUT or SAMPLE m statement at the end of the
DYNAMIC program segment (Section 1-6). That is true, for instance, in sim-
ulated digital controllers.

In principle, all switch and limiter operations can be modeled as sampled-
data assignments with a sufficiently high sampling rate. To obtain a desired
switching-time resolution, one is then likely to require a sampling rate differ-
ent from the input/output sampling rate used, for example, for displays. One
can easily implement slower sampling with SAMPLE m or faster sampling by
setting the DESIRE system variable MM to values greater than 1 (Section 1-6).
In the latter case, the number of output samples for displays or listings will be
less than NN, so that one cannot observe the switch output itself, only its
effects on slower model variables (see also Section 2-9). 

This simple solution of the switching problem again implies a compromise
between switching-time resolution and computing speed, for no integration
step can be larger than the sampling interval COMINT = TMAX/(NN – 1)
(Section 1-9). This may be wasteful when we need only a few switch and/or
limiter operations.

2-11. Using the step Operator and Heuristic 
Integration-step Control

A better way to obtain correct integration of switch and limiter functions is to
program all such operations following a DESIRE step statement placed at
the end of the differential equation program section. Sampled-data assign-
ments following OUT and/or SAMPLE m, if any, would then be programmed
after step assignments.

Assignments following the DESIRE step statement do not execute at
every derivative call but only at t = t0 and at the end of every integration step.
The experiment protocol must initialize the targets of assignments following
step, for they would otherwise be undefined at t = t0. They are, in fact, state
variables relating past and present, just like sampled-data inputs.
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Use of the step statement clearly solves our problem. As we already noted in
Section 2-9, proper switching-time resolution requires the experiment protocol
to set a sufficiently low value of DT for fixed-step integration rules, or of
DTMAX or TMAX/(NN – 1) for variable-step-integration rules.8

But we can do much better. DESIRE integration rules 2, 3, and 5 (respec-
tively Euler and fourth- and second-order Runge–Kutta rules) permit user-
programmed changes of the integration step DT during simulation runs. We
can thus start with some desired value DT = DT0 and reduce DT heuristi-
cally when we are close to a switching time, for example, when the
absolute value of a servo error is small. This technique reduces the com-
puting-time loss, especially for simulations that need only occasional
switching or limiting.

2-12. Example: Simulation of a Bang-bang Servomechanism

The bang-bang servomechanism modeled in Figure 2-6a is identical with the
continuous-control servo in Section 1-14, except that now the control voltage
does not vary continuously but switches between positive and negative val-
ues. We programmed the assignment

voltage = – sgn(k * error + r * xdot – 0.01* voltage)

following a step statement at the end of the DYNAMIC segment. For added
realism, we implemented a Schmitt trigger (Section 2-16e) instead of a sim-
ple comparator by subtracting a fraction of voltage in the sgn argument.

The experiment protocol script sets an initial value for voltage, which
would otherwise be undefined at t = 0. DESIRE’s integration rule 5 (irule 5)
implements second-order Runge–Kutta integration and allows one to program

DT = DT0 * SAT(abs(error * pp)) + DTMIN

where DT0, DTMIN, and pp are parameters set by the experiment protocol.
DT decreases to DTMIN when the servo error error is small. Figure 2-6a lists
the program, and Figure 2-6b shows results, including the interesting time
history of the programmed integration step.

If there is more than one discontinuous function, two or more DT expres-
sions must be multiplied together

Modeling Limiters and Switches 47

8 DESIRE integration rules 4–8 let one set DTMAX explicitly. For integration rules 9–15, we
resort to the method of Section 2-11 and make NN large enough to obtain the desired time res-
olution. We can use MM > 1 to get more sampling points than input/output points.
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-- BANG-BANG SERVOMECHANISM
-- ensures correct integration with step operator
--
-- DT is programmed heuristically with irule 5
------------------------------------------------------------------------
irule 5 | -- permits user-programmed DT
------------------------------------------------------------------------
scale = 2 | display N1 | display C8 | -- display
TMAX = 2.5   |   NN = 10000 
------------------------------------------------------------------------
A = 0.1    |  w = 1.2  | -- signal parameters
B = 100     |  maxtrq = 1   |  -- motor parameters
g1 = 10000 | g2 = 1   |   R = 0.6
k = 40   |  r = 2.5   | -- control parameters
--
pp = 100    |   DT0 = 0.0002    | DTMIN = DT0/10
-------
voltage = 0     |  -- must initialize this!
drun
write "maxDT = ";DT0 + DTMIN
------------------------------------------------------------------------
DYNAMIC
------------------------------------------------------------------------
u = A * cos(w * t)     |  -- input 
error = x - u     |  -- servo error
torque = maxtrq * tanh(g2 * V/maxtrq) 
------------------------------------------------------------------------
d/dt V = - B * V + g1 * voltage |  --  motor field delay
d/dt x = xdot   |
d/dt xdot = torque - R * xdot 
-----------------------------------------
step
voltage = - sgn(k * error + r * xdot - 0.01 * voltage)
DT = DT0 * SAT(abs(error * pp)) + DTMIN
--
-------------------------- rescaled stripchart display
--
X = 5 * x + 0.5 * scale    |  U = 5 * u + 0.5 * scale
ERROR = 4 * error
TORQUE = 0.25 * torque - 0.5 * scale
dt = 2500 * DT- scale
dispt X, U,TORQUE, ERROR, dt

FIGURE 2-6a. DESIRE program for the bang-bang servomechanism.



LIMITERS, SWITCHES, AND DIFFERENCE EQUATIONS

2-13. Limiters, Absolute Value, and Maximum/Minimum Selection

In most digital computers, the fastest nonlinear floating-point operation is not
the simple limiter function (Section 2-8; see also [2–4,10]) but the absolute-
value function

abs(x) ≡ |x| = � –x (x < 0)
(2-9)

x (x <– 0)

(full-wave rectifier), which only needs to change the sign bit of a floating-
point number. It is therefore profitable to remember the relations

lim(x) ≡ 0.5 * [x + abs(x)] ≡ 0.5 * x + abs(0.5 * x) (2-10)

sat(x) ≡ lim(x + 1) – lim(x – 1) – 1 ≡ 0.5 * [abs(x + 1) – abs(x – 1)] (2-11)
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FIGURE 2-6b. Scaled stripchart display for the bang-bang servomechanism. The display
shows time histories of the input u, output x, servo error, motor torque, and programmed time
step DT. The original display showed each curve in a different color.



SAT(x) ≡ lim(x) – lim(x – 1) ≡ 0.5 * [1 + abs(x) – abs(x – 1)] (2-12)

deadz(x) ≡ x – sat(x) ≡ x – 0.5 * [abs(x + 1) – abs(x – 1)] (2-13)

tri(x) ≡ 1 – abs(x) lim[tri(x)] ≡ tri[sat(x)] ≡ TRI(x) (2-14)

These identities are, in fact, used to implement DESIRE’s library functions.
To find the largest and smallest of two arguments x, y, we use

max(x, y) ≡ x + lim(y – x) ≡ y + lim(x – y)

≡ 0.5 * [x + y + abs(x – y)] (2-15a)

min(x, y) ≡ x – lim(x – y) ≡ y – lim(y – x)

≡ 0.5 * [x + y – abs(x – y)] (2-15b)

Note also

max(x, y) – min(x, y) ≡ x + y (2-16)

lim(x) ≡ max(x, 0) (2-17)

2-14. Output-limited Integration

Integration of the switched function

ydot = swtch(max – y) * lim(x) 

+ swtch(y – min) * lim(–x) (min < max) (2-18)

stops whenever the integral y produced by d/dt y = ydot exceeds preset
bounds [8]. Note that this is not the same as an integrator followed by an out-
put limiter.

2-15. Modeling Signal Quantization

The model digital controllers in Sections 2-6 and 2-7 processed ordinary
floating-point numbers [4]. But one may want to study the effects of signal
quantization in digital control systems or in simulated signal processors and
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digital measurement systems. Figure 2-7 illustrates quantization of a sine
wave with the assignment

y = a * round(x/a)

where a is the quantization interval. The error y – x caused by signal quanti-
zation is the quantization noise.[4] The DESIRE library function round(x)
returns floating-point numbers rounded to the nearest integer value, not inte-
gers. round(x) is a switched step function that needs to follow a step, OUT,
or SAMPLE m at the end of a DYNAMIC program segment. round(x) can
also implement rounding in experiment-protocol scripts. 

2-16. Continuous-variable Difference Equations with Switching
and Limiter Operations

(a) Introduction
This section presents a number of powerful modeling tricks that implement
simple recursive assignments

q = F(t; q) (2-19)

in DYNAMIC program segments. We already discussed sampled-data assign-
ments of this form in Section 2-2. But q is not necessarily a sampled-data
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FIGURE 2-7. Signal quantization and quantization noise.



variable; q can be a “continuous” variable used in a differential-equation sys-
tem. In any case, DESIRE recognizes recursive assignments (2-19) as differ-
ence equations and automatically assigns the difference-equation state
variable q the default initial value 0, as in Section 2-2. As already noted for
sampled-data state variables (Section 2-5), difference-equation state vari-
ables are not automatically reset by reset or drunr statements. The experi-
ment protocol must reset them explicitly as needed. 

If the function F in Eq. (2-19) involves limiters or switches (as in the fol-
lowing examples), then the difference equation should follow a step, OUT, or
SAMPLE m statement at the end of the DYNAMIC program segment.

(b) Track-hold Simulation
The difference equation

y = y + swtch(ctrl) * (x – y) (2-20)

models a track-hold (sample-hold) circuit. The “continuous” difference-equation
state variable y tracks the input x when the control variable ctrl is positive and
holds its last value when ctrl is less than or equal to 0. Figure 2-8 illustrates the
track-hold action.
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FIGURE 2-8. Track-hold operation modeled with the difference equation y = y + swtch(ctrl)
* (x – y). The control waveform was obtained with the program of Figure 2-14.



(c) Maximum- and Minimum-value Holding
The difference-equation state variable

max = x + lim(max – x) (2-21)

tracks and holds the largest past value of x = x(t) (Fig. 2-9; see also Section
2-13; [3]). DESIRE automatically assigns max the initial value 0; since that
would keep max from remembering negative values of x, we initialize max
with a large negative value such as –1.0E+30.

As also shown in Figure 2-9, the difference-equation state variable

min = x – lim(x – min) (2-22)

similarly holds the smallest past value of x; we initialize min with 1.0E+30
An example in the book CD applies Eq. (2-21) to hold the largest past value
of |x| for automatic display scaling [9].

(d) Simple Backlash and Hysteresis Models
The difference equation

y = y + a * deadz((x – y)/a) (2-23)
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FIGURE 2-9. Maximum and minimum holding with the difference equations (2-21) and (2-22).



models the transfer characteristic of one-way simple backlash (e.g., gear
backlash) from x to y (Fig. 2-10; [3]). We can use y to drive various continu-
ous-function generators, for example,

z = tanh(10 * y)

to obtain other transfer characteristics exhibiting hysteresis or memory of
past input values (Fig. 2-11). Truly realistic hysteresis models, though,
should be developed directly from physics; they are likely to involve differ-
ential equations as well as difference equations.

A different example, the difference equation

y = deadc(A * y – x ) (2-24)

produces the transfer characteristic of a deadspace comparator with hystere-
sis (Fig. 2-12). This has been used to model the operation of pairs of space-
vehicle on–off vernier control rockets.9

(e) The Comparator with Hysteresis (Schmitt Trigger)
The most useful of our hysteresis-type difference equations

p = A * sgn(p – x) (2-25)

directly models a comparator with regenerative feedback, the Schmitt trigger
circuit widely used by electrical engineers (Fig. 2-13; [2,3,10]). The
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FIGURE 2-10. This Cygwin display shows a simple backlash transfer characteristic with a
demonstration program sweeping x with the sawtooth waveform of Section 2-15.

9 Equation (2-24) corrects a printing error in Reference [4].



difference-equation state variable p defaults to 0 but is usually initialized to
–A or +A. This modeling trick was already used with early fixed-point block-
diagram simulation languages [2,3].

Simulated Schmitt triggers often replace deadspace comparators in control
systems (Example 2.1), but perhaps their most useful application is to the
generation of periodic signals (Section 2-17).
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FIGURE 2-12. Transfer characteristic (y versus x) of a deadspace comparator with hysteresis.



2-17. Signal Generators and Signal Modulation

Feeding the time-integrated output of a hardware or software Schmitt
trigger back to the input (Fig. 2-14) recreates the classical Hewlett-
Packard signal generator [2,3,10]. This is implemented with the simple
program

TMAX = 5 | DT = 0.0001 | NN = 5000 

----------------------------------------------------------

A = 0.22 | a = 4 | — signal parameters

x = 1 | p = 1 | — initialize

drun
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FIGURE 2-14. Integrator feedback around a Schmitt trigger model produces a useful signal
generator. The resulting square waves p(t) and triangle waves x(t) are shown in Figure 2-15.



----------------------------------------------------------

DYNAMIC
----------------------------------------------------------

d/dt x = a * p | -- triangle waves

step

p = sgn(p – x) | -- square waves (2-26)

The experiment protocol usually initializes the difference-equation state vari-
able p and the differential-equation state variable x with p = A and x = –A.

When p = A, the integrator output x increases until –x overcomes the pos-
itive Schmitt-trigger bias p = A in Eq. (2-25). p now switches to –A, and x
decreases until it reaches the new trigger level –A. This process repeats and
generates a square wave p = p(t) and a triangle wave x = x(t), both of ampli-
tude A and frequency a/(4 * A) (Fig. 2-15). Frequency resolution is deter-
mined by the switching-time resolution, that is, by the largest DT value used
in the integration routine (Sections 2-10 and 2-11).

These periodic functions are useful as computer-generated test signals and
control signals.10 An added assignment

y = p * x (2-27)
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FIGURE 2-15. This Cygwin (Unix under WindowsTM) screen shows a terminal window, an
editor window, and graphics demonstrating the signal-generator program in Section 2-17. The
original display showed different curves in different colors.

10 We used the triangle wave x(t) to sweep the input to all the function-generator displays shown
in this chapter.



generates a sawtooth waveform y that sweeps between –A and A with fre-
quency 0.5 * a/A. One can produce a large variety of more general periodic
waveforms by feeding p(t) or y(t) to various function generators, as in

z = f(y) (2-28)

f(y) can be a library function, a user-defined function, or a table-lookup function.
We can frequency-modulate all these periodic waveforms by making the

parameter a a variable. One can also add a variable bias –mod to the saw-
tooth waveform y and send the result to a comparator whose output 

z = sgn(y – mod)

is then a train of pulse width-modulated pulses (Fig. 2-15). We note here that
computer-generated sinusoidal signals s = A * sin(w * t + phi) can also be
amplitude-, frequency-, and/or phase-modulated by making the parameters a,
w, and phi variable.
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3
Programs with Vector/Matrix
Operations and Submodels

VECTOR ASSIGNMENTS AND VECTOR 
DIFFERENTIAL EQUATIONS

3-1. Arrays, Subscripted Variables, and 
State-variable Declarations

Array declarations such as

ARRAY x[n] | ARRAY A[n, m] or ARRAY x[n], A[n, m]

in DESIRE experiment-protocol scripts define one- and two-dimensional
arrays (vectors1 and matrices2) of subscripted real variables x[1], x[2], …,
x[n] and A[i, k] (i = 1, 2, …, n; k = 1, 2, …, m). Note that vectors and
matrices are much more than a shorthand notation—they are intuitively
meaningful abstractions in many useful models (e.g., forces and velocity
vectors).

59

Advanced Dynamic-system Simulation: Model-replication Techniques 
and Monte Carlo Simulation By Granino A. Korn
Copyright © 2007 by John Wiley & Sons, Inc.

1 Our vectors are indeed vectors in the mathematical sense, since Section 3.1.2 provides a suit-
able definition of vector addition, and multiplication of vectors by scalars.
2 An n × m matrix declared with ARRAY A[n, m] has n rows and m columns. DESIRE can also
declare arrays with more dimensions, but they are rarely used.
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All subscripted variables (array elements) initially default to 0. Experiment-
protocol scripts can “fill” arrays with assignments to subscripted variables, as in

A[19, 4] = 7.3 | v[2] = a – 3 * b
for i = 1 to n | x[i] = 20 * i | next

or from data lists or files and read assignments, as in 

data 1.2, – 4, a + 4 * b, 7.882, … | read v, A, …

Once declared, vectors and matrices, and the resulting subscripted variables,
can be freely used both in the experiment protocol3 and in DYNAMIC pro-
gram segments. DYNAMIC segments can assign time-variable expressions
to array elements. The program flags undeclared subscripted variables, vec-
tors, or matrices as undefined.

Before subscripted variables x[i], y[i], … or vectors x, y, … can be used as
state variables in differential equations (Section 1-2), the experiment-protocol
script must declare one-dimensional state-variable arrays (state vectors) with
a STATE declaration such as

STATE x[n], y[m], …

Scalar state variables need not be declared, unless they are to be used in sub-
models (Section 3-17) or in more than one DYNAMIC program segment.

3-2. Vector Operations in DYNAMIC Program Segments—
The Vectorizing Compiler

(a) Vector Assignments and Vector Expressions
Assume that the experiment protocol has declared vectors y1, y2, y3, … all of
the same dimension n, say with

ARRAY y1[n], y2[n], y3[n], … (3-1)

Then a vector assignment [1]

Vector y1 = g(t; y2, y3, … ) (3-2a)

3 The detailed syntax of the script language is described in the DESIRE reference manual sup-
plied in the book CD.



in a DYNAMIC program segment compiles automatically into n scalar
assignments

y1[i] = g(t; y2[i], y3[i], …) (i = 1, 2, …, n) (3-2b)

The simulation time variable is t. g() stands for any expression that can be
used in a scalar assignment. Such a vector expression may involve literal num-
bers, scalar parameters, parentheses, library functions, user-defined functions,
or table-lookup functions. An error is returned when one tries to combine vec-
tors with unequal dimensions.

For example, if y, u, v, and z are n-dimensional vectors, then

Vector y = (1 – v) * (cos(alpha * z * t) + 3 * u)

compiles into

y[i] = (1 – v[i]) * (cos(alpha * z[i] * t) + 3 * u[i]) (i = 1, 2, ..., n) 

Note that the expression g() is the same for all n vector components y1[i]. The
DESIRE compiler reads the vector dimension n from the array data structure.
The code for n successive vector components is then generated by a compiler
loop. Each pass through this loop compiles all the operations for the expres-
sion g(y2[i], y3[i], … ) and then automatically increments the vector index i.
The resulting “vectorized” code is fast, for there is no runtime loop overhead. 

A DYNAMIC program segment can have multiple vector assignments with
the same or different dimensions.

(b) Vector Differential Equations
Assume that the experiment protocol has declared the n-dimensional arrays
(3.1) and has also declared an n-dimensional state vector x with

STATE x[n]

Then a vector differential equation (vector state equation)

Vectr d/dt x = f(t; x, y1, y2, …) (3-3a)

in a DYNAMIC program segment compiles automatically into n scalar dif-
ferential equations

d/dt x[i] = f(t; x[i], y1[i], y2[I], …) (i = 1, 2, …, n) (3.3b)

f() represents an arbitrary vector expression, just as in Section 3-2a. The ini-
tial values of the subscripted state variables x[i] default to 0 unless the exper-
iment protocol assigns other values. After a simulation run, initial values of
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all differential-equation state variables can be reset by reset and drunr state-
ments in the experiment-protocol script.

A DYNAMIC program segment may contain any number of vector assign-
ments and vector differential equations together with scalar assignments
and/or differential equations. Different vector-assignment targets and state
vectors can have different dimensions. Scalar expressions can also contain
explicit subscripted variables, provided that their arrays have been declared. 

(c) Vectorization and Model Replication—Significant Applications
A given system of n-dimensional vector assignments and n-dimensional vector
differential equations, say

Vector y1 = g1(t; x1, x2; a, alpha)
Vector y2 = g2(t; x1, x2, y1; beta)
Vectr d/dt x1 = f1(t; x1, x2; y1, y2; b, c)
Vectr d/dt x2 = f2(t; x1, x2; gamma)

is compiled into corresponding sets of n scalar operations 

y1[i] = g1(t; x1[i], x2[i]; a[i], alpha) (i = 1, 2, …, n)
y2[i] = g2(t; x1[i], x2[i], y1[i]; beta) (i = 1, 2, …, n)
d/d x1[i] = f1(t; x1[i], x2[i]; y1[i], y2[i]; b[i], c[i]) (i = 1, 2, …, n)
d/dt x2[i] = f2(t; x1[i], x2[i]; y1[i]; gamma) (i = 1, 2, …, n)

in that order. The compiler effectively creates n replicated models.4 These
models have different parameter combinations a[i], b[i], c[i] defined by the
parameter vectors a, b, and c, but all n replicated models share the features
represented by the scalar parameters or variables alpha, beta, and gamma.5

Vectorization allows one to exercise a possibly large number of models in
a single simulation run. Applications of this extraordinarily powerful simula-
tion technique are the main topic of this book. Specifically,

• Vectorized parameter-influence studies simulate replicated models with
different parameter values (Sections 4-2 and 4-3).

• Vectorized Monte Carlo simulation computes statistics on samples of
models with random parameters or noise inputs (Sections 4-7 to 4-10;
Chapter 5).
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5 Scalar quantities are common to all the replicated models and must, therefore, not depend in any
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by DYNAMIC-segment assignments, or even by differential equations.



• Neural-network simulations can replicate different neuron models
(Chapter 6.).

• The Method of Lines represents suitable partial differential equations as
sets of ordinary differential equations (Sections 7-10 to 7-14).

• Map-based agroecology simulations replicate models of crop growth or
species competition at different points of a landscape (Sections 7-15 and
7-16).

3-3. Matrix-vector Products in Vector Expressions 

(a) Definition
Any n-dimensional vector in the vector expressions f or g in Sections 3-1 and
3-2, say y2, can be a matrix-vector product A * v. Here, A is a rectangular n × m
matrix, and v is an m-dimensional vector,6 both declared in the experiment
protocol. Expressions for A or v cannot be substituted, but A and v can be
defined by preceding assignments. Nonconformable matrix-vector products
are automatically rejected with an error message. More specifically, a matrix-
vector-product assignment such as

Vector y = tanh(A * v)

compiles into n scalar assignments

y[i] = tanh(�m
k+1

A[i,k]*v[k]) (i = 1, 2, ..., n)

A vector v used in a matrix-vector product A * v must be a simple vector or
state vector; it cannot be a vector expression, matrix-vector product, or index-
shifted vector (Section 3-6). As we already noted, though, one can assign an
m-dimensional vector expression to v with a preceding vector assignment. In
particular, cascaded linear transformations

Vector z = B * v | Vector y = A * z

effectively multiply v by the matrix product AB of two appropriately dimen-
sioned matrices.
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the program returns an “illegal recursion” error. For example, Vector x = A * x is illegal and
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is no such problem in Vectr d/dt operations, since the compiler assigns a hidden intermediate
variable for each derivative.



For matrix-vector products written as A% * x, DESIRE transposes the
matrix A. This is useful in neural-network applications (Section 6-12).

(b) A Simple Example: Resonating Oscillators
The following model is typical of a large class of mass–spring systems. The
differential-equation system

d/dt x1 = x1dot | d/dt x1dot = - ww * x1 - k * (x1 - x2)

d/dt x2 = x2dot | d/dt x2dot = - ww * x2 - k * (x2 - x1) - r * x2dot

(3.4)

models a pair of harmonic oscillators coupled by a spring. The first oscillator
is undamped, and the second oscillator has viscous damping. When the sys-
tem is started with an initial displacement x[1] = 0.5, the second oscillator
resonates with the motion of the first oscillator; the damping in the second
oscillator eventually dissipates the energy of both systems (Fig. 3-1).

The simulation program in Figure 3-1 models the same fourth-order sys-
tem with one vector differential equation. The experiment-protocol script
declares a four-dimensional state vector x and a 4 × 4 matrix A with

STATE x[4] | ARRAY A[4,4]

We then represent the state variables x1, x1dot, x2, x2dot, in that order, by
state-vector components (subscripted variables) x[1], x[2], x[3], x[4]. The 4 × 4
matrix

0 0 1 0
A = -(ww+k) -k 0 0

0 0 0 1
-k -(ww+k) 0 -r

is filled with a data/read assignment

data 0, 0, 1, 0; 0, 0, 0, 1; - (ww + k), - k, 0, 0; - k, - (ww + k), 0, - r | read A

3-4. Vector Sampled-data Assignments and 
Vector Difference Equations

Subscripted variables, and thus also vectors and matrices, can be sampled-data
variables as well as “continuous” variables, so that there can be vector assign-
ments, including vector difference equations, and updating assignments, in
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DYNAMIC-segment sampled-data sections following an OUT or SAMPLE m
statement, as in the case of scalars (Section 2-1). Another way to program vec-
tor difference equations is in the “incremental” form

Vectr delta q = vector expression

which is equivalent to

Vector q = q + vector expression
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FIGURE 3-1. Matrix-vector form of the resonating-oscillator simulation.

-- RESONATING OSCILLATORS
-----------------------------------------------------------------------
TMAX = 15 | DT = 0.00001 | NN = 100000
--
ww = 600 |  -- circular frequency
k = 40 | -- coupling coefficient
r = 0.7 | -- damping coefficient 
--
STATE x[4] | ARRAY A[4,4]
data 0, 0, 1, 0; 0, 0, 0, 1; - (ww + k), - k, 0, 0; - k, - (ww + k), 0, - r  |  read A
--
x[1] = 0.5 | --                    initial value     
drun
-----------------------------------------------------------------------
DYNAMIC
-----------------------------------------------------------------------
Vectr d/dt x  = A * x

→

+

0

–
0 7.5 15

scale = 1  X,Y vs. t



q is a difference-equation state vector (see also Section 2-2). Note that the initial
values of all array components not explicitly specified in the experiment proto-
col default to 0. This is true for all subscripted variables, not just state variables.

3-5. Sorting Vector and Subscripted-variable Assignments

Vector defined-variable assignments for differential equations or difference
equations must be sorted as in Sections 1-9 and 2-1, but now sort errors can-
not return “undefined variable” messages, since all arrays are predefined.
Simple models can be sorted by inspection. One may also be able to sort
replicated (vectorized) models in scalar form before adding their Vectr d/dt
and Vector prefixes.

Explicit assignments to subscripted variables, say

d/dt x[2] = – x[3] y[n] = a * sin(t) + b

are normally only used to “amend” a preceding Vectr d/dt or Vector assign-
ment for selected index values, as in Section 7-6b and Table 7-1. That poses
no sorting problems.

MORE VECTOR OPERATIONS

3-6. Index-shifted Vectors

Given a properly declared vector v ≡ (v[1], v[2], …, v[n]), index-shifted ver-
sions v{k} of v can be introduced in n-dimensional vector expressions, but
not in matrix-vector products or DOT products. The index shift k is a rounded
scalar expression computed at compile time. 

When a vector expression containing v{k} is compiled, v{k} contributes
index-shifted vector components v[i + k] wherever v would contribute vector
components v[i]. Thus, if y1, y2, … are n-dimensional vectors,

Vector y1 = g(t; y2, y3{k}, … ) (3-5a)

compiles into the n scalar assignments

y1[i] = g(t; y2[i], y3[i + k], …) (i = 1, 2, …, n) (3-5b)

where the compiler sets v[i + k] = 0 for i + k < 0 or i + k > n.7
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7 An index-shifted vector x appearing in a Vector or Vectr delta assignment must not be iden-
tical with the assignment target v when the index shift is positive. In case it is, an illegal recur-
sion is caused and an error message returned, since the system fills vector arrays starting with
high index values. There is no such restriction for Vectr d/dt operations.



Vector-shift operations neatly implement relations between vector compo-
nents with different indices. This has many interesting and useful modeling
applications, such as

• shift registers, time delays, pseudorandom-noise generators, and digital
signal processing,

• neural-network layers with memory and predictor networks (Section 6-22),
• partial differential equations (Section 7-11),
• fuzzy-logic membership functions (Section 7-7).

Specifically, vector-component values can be shifted along a vector array,
and also successive samples of a scalar function s(t) of the simulation time t
can be shifted into and out of a vector array (Section 6-22).

3-7. Sums, DOT Products, and Vector Norms

(a) Sums and DOT Products
DESIRE DOT products assign inner products of vectors to scalar variables. In
both DYNAMIC program segments and experiment-protocol scripts,

DOT xsum = x*1 assigns �
n

k=1
x[k] to xsum

DOT p = x*1 assigns �
n

k=1
x[k] y[k] to p

Compiled sums and DOT products do not incur any summation-loop over-
head (loop-unrolling compilation).

The vectors x and y in a DOT operation must not be vector expressions or
index-shifted vectors. But y can be a matrix-vector product A * v or A% * v
(Section 3-3), so that bilinear forms x * A * y and quadratic forms x * A * x
can be neatly evaluated. DESIRE automatically rejects nonconformable
products with an error message.

DYNAMIC program segments also accept sums of DOT products, for
example,

DOT p = p * q + r * s + x * A * y + z * 1

(b) Euclidean,Taxicab, and Hamming Norms
DOT assignments efficiently compute squared vector norms, which are often
needed as error measures in statistics and optimization studies. In particular,

DOT xnormsq = x * x
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produces the squared Euclidean norm

xnormsq= ||x||2 = �
n

k=1
x2[k]

of a vector x. The Euclidean distance between two vectors x, y is the norm
||x – y|| of their difference. Thus

Vector e = x – y | DOT enormsq = e * e

produces the useful error measure

enormsqr = �
n

k=1
(x[k] - y[k])2

The sums of scalar functions can be computed conveniently as in

S = exp(x[1]) + exp(x[2]) + exp(x[2]) + ... + exp(x[n])

with

Vector y = exp(x) | DOT S = y * 1

In particular,

Vector xa = abs(x) | DOT xanorm = xa * 1

generates the taxicab norm (city-block norm) anorm = |(x[1])| + |(x[2])| + …
of a vector x. The taxicab norm of a vector difference (taxicab distance, as in
a city with rectangular blocks) is another useful error measure. 

If all components x[i] of a vector x equal 0 or 1, the taxicab norm reduces
to the Hamming norm, which simply counts the nonzero elements. The
Hamming distance ||x – y|| between two such vectors is the count of corre-
sponding element pairs that differ.

3-8. Maximum/Minimum Selection and Masking

(a) Maximum/Minimum Selection
The vector assignment

Vector y^ = vector expression

computes the vector produced by Vector y = vector expression and then sets
all but its largest component to 0. Such vectors are particularly useful as
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pattern selectors in neural-network simulations (Section 6-4). To find the
value ymax of the largest vector component of vector expression, use

Vector y^ = vector expression | DOT ymax = y * 1

The index I of the largest vector component y[i] can be determined with a
small loop in the experiment-protocol script:

i = 0 | repeat | i = i + 1 | until y[i] <> 0 | I = i 

The smallest vector component of vector expression is, of course, minus the
largest component of – vector expression. Maximum or minimum selection
is useful in parameter-influence studies and optimization studies (Section
4-3d). Note that these operations apply neatly to arrays created by vector
equivalences (Section 3-11).

(b) Masking Vector Expressions
Vector expressions used with Vector and Vectr d/dt operations (and also with
Vectr delta operations, Section 3-4) can be masked with an n-dimensional
mask vector vv, as in

Vector x = [vv] vector expression
Vectr d/dt x = [vv] vector expression

The ith component of a masked vector expression is set to 0 for all values of
the index i such that vv[i] � 0. Mask vectors vv are set up by the experiment-
protocol program and do not change in the course of a simulation run. Vector
masking has been used to “prune” neuron layers in neural-network simulations.

MATRIX OPERATIONS

3-9. Matrix Operations in Experiment-protocol Scripts

DESIRE models use matrices in matrix-vector products (Section 3-3), and
also as row-pattern matrices in neural-network studies (Section 6-5b). We
saw in Section 3-1 how experiment-protocol scripts declare and “fill” matrix
arrays. For convenience, DESIRE experiment-protocol scripts can also pro-
duce square null and unit matrices, transposed and inverse square matrices,
and products of square matrices for use later in the program. After the square
matrices A, B, C, … are declared,

MATRIX A = 0 resets all A[i, k] = 0
MATRIX A = 1 produces a unit matrix A (1s along diagonal)
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MATRIX B = $In(A) makes B the matrix inverse of A (if it exists)
MATRIX B = A% makes B the matrix transpose of A
MATRIX D = a * A * B * C * … produces a matrix product D (a is an optional

scalar)

These assignments return error messages if matrices are not square or uncon-
formable, or if an inverse does not exist. As noted, for properly dimensioned
rectangular matrices A, B

MATRIX B = A% makes B the transpose of A (b[i, k] = a[k, i] for all i, k)

Nonconformable matrices A, B are again rejected with an error message.

3-10. Matrix Assignments and Difference Equations in
DYNAMIC Program Segments

DYNAMIC program segments can manipulate matrices declared in the
experiment protocol with matrix assignments

MATRIX W = matrix expression

Matrix expressions are functions of scalars a, b, …, vectors u, v, …, and/or
matrices A, B, …, which can be constants or variables. Some examples are

MATRIX W = a * A + b ( W[i, k] = a * A[i,k] + b )
MATRIX W = a * A + b * B ( W[i, k] = a * A[i,k] + b * B[i, k] )
MATRIX W = recip(A) ( W[i, k] = 1/A[i, k] )
MATRIX W = sin(A) ( W[i, k] = sin(A[i, k]) )
MATRIX W = u * v ( W[i, k] = u[i] v[k] )
MATRIX W = u & v ( W[i, k] = min{u[i], v [k])})

The syntax of more general matrix expressions is defined in the DESIRE ref-
erence manual. Matrices can, moreover, be manipulated as equivalent vectors
(Section 3-11).

Matrix difference equations are used mainly to modify matrix-vector
products W * x in optimization studies (control systems, statistical regression,
model matching, and neural networks). In particular, the matrix difference
equation

DELTA W = matrix expression

is equivalent to

MATRIX W = W + matrix expression
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The resulting matrix elements W[i, k] are difference-equation state variables
(Section 2-2). Their initial values default to zero unless otherwise specified
by the experiment protocol. They are not reset by reset or drunr statements.
The precautions of Section 2-2 apply. 

3-11. Vector and Matrix Operations using Equivalent Vectors

DESIRE experiment protocol scripts can use two very useful equivalence
declarations similar to those in Fortran. In particular, the modified ARRAY
declaration

ARRAY x1[n1] + x2[n2] + … = x, … 

declares concatenated subvectors x1, x2, … together with a vector x of dimen-
sion n1 + n2 + … whose elements overlay the subvectors x1, x2, …, starting
with x1. One can then access, say, x2[3] also as x[n1+3]. Subvectors are par-
ticularly useful in neural-network simulations (Section 6-2).

The second type of equivalence declaration

ARRAY V[n, m] = v

allows one to access a two-dimensional array and its elements both as an n × m
matrix V and as a vector v with dimension nm. Then equivalent vector expres-
sions with the convenient Vector and Vectr d/dt operations to relate and mod-
ify matrices can be used. This technique can often (not always) replace matrix
assignments. Applications include image processing, fuzzy-logic models
(Section 7-7), and landscape modeling (Section 7-15).

Note that both concatenated subvectors and equivalent array vectors allow
identification of maximum and minimum elements of large arrays by the
method of Section 3-8.

VECTORS IN PHYSICS AND CONTROL-SYSTEM PROBLEMS

3-12. Vectors in Physics Problems

Vectors such as forces or velocities are not just useful shorthand notations for
multiple equations; they are intuitively meaningful abstractions. Many rela-
tions used in physics problems are most easily understood when we represent
them in vector form, for example,

Vectr d/dt position = velocity | Vectr d/dt velocity = force/mass
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However, to obtain numerical results such as trajectory plots, it is usually
necessary to specify vector components and initial values as scalar sub-
scripted variables.

3-13. Simulation of a Nuclear Reactor

The program in Figure 3-2 shows a compact vector model of the chain reac-
tion in a nuclear reactor. D. Hetrick’s classical textbook problem [1–3] lumps
the entire reactor into a single core region and neglects chain-reaction poi-
soning by reaction products such as xenon. The state variables are the nor-
malized chain-reaction power output enp (proportional to neutron density),
the reactor temperature temprtr, and six normalized precursor-product den-
sities d[1], d[2], …, d[6]. Our compact vector model collects the state vari-
ables d[i] into a six-dimensional state vector d.

When the control-rod input b * t increases the reactivity r, the chain reac-
tion increases enp dramatically. In the educational TRIGA reactor, the result-
ing increase in the reactor temperature in turn reduces the reactivity r, so that
a short and safe power pulse results (Fig. 3-2b).

3-14. Linear Transformations and Rotation Matrices

Simple vector assignments such as Vector y = A * x conveniently implement
linear operations on vectors, such as rotations. Note that y = A * x can repre-
sent the result of rotating the vector x into a new position, or y may be a rep-
resentation of x in a rotated coordinate system.

The rotation of a plane vector x ≡ (x[1], x[2]) into the vector y ≡ (y[1], y[2])
can be programmed with two scalar defined-variable assignments

y[1] = x[1] * cos(theta) - x[2] * sin(theta)
y[2] = x[1] * sin(theta) + x[2] * cos(theta)

Instead, a two-dimensional rotation matrix A with ARRAY A[2, 2] can be
declared in the experiment protocol, and then possibly time-variable ele-
ments A[i, k] of A are specified in a DYNAMIC program segment:

A[1,1] = cos(theta) | A[1,2] = – sin (theta)
A[2,1] = – A[1,2] | A[2,2] = A[1,1]

The rotation can now be modeled with

Vector y = A * x
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FIGURE 3-2a. Simulation program for a nuclear-reactor model using vector operations.
temprt is the reactor temperature.

-- Vector Model of the TRIGA Pulsed Nuclear Reactor
---------------------------------------------------------------------------------------------
-- r is the reactivity in dollars (we change r with time)
-- enp is the power in mw (proportional to neutron density)
-- en0 is the initial power in mw 
-- en = enp/en0 is the normalized power (initial value is 1.0)
-- d[i] (i = 1, 2, ..., 6) are normalized precursor-product densities
-- bol = beta/l, lambda = al[i]  (i = 1, 2, ..., 6)
-- f[i]  (i = 1, 2, ..., 6) are normalized delayed neutron fractions 
-- alf is the temperature coeff. of reactivity (dollar/cdeg)
-- ak is the reciprocal heat capacity (cdeg/mj)
------------------------------------------------------------------ ----------------------
display N1 | display C8 | display Q | scale = 200
TMAX= 0.2 | NN = 5001 | DT = 0.00001
------
a = 2.0 | b = 0.0 | bol = 140.0
alf = 0.016 | ak = 12.5 | gamma = 0.0267
en0 = 0.001 
-------
STATE d[6] | ARRAY al[6], f[6]
--                                                        fill the al and f arrays
data 0.0124, 0.0305, 0.111, 0.301, 1.14, 3.01   |   read al
data 0.033, 0.219, 0.196, 0.395, 0.115, 0.042   |   read f
--
data 1, 1, 1, 1, 1, 1 | read d  | -- initial values of
--                                                         precursor densities
temprt = 0 |  en = 1.0   |  --                            initial values
drun
-------------------------------------------------------------------------------
DYNAMIC
-------------------------------------------------------------------------------
r = a + b * t - alf * temprt | --   b * t is a control-rod input
enp = en0 * en
DOT sum = f * d | -- note DOT product!
endot = bol * ((r - 1.0) * en + sum)
omega = endot/en | enlog = 0.4342945 * ln(en)
---------------------------------------------------------------------
d/dt temprt = ak * enp - gamma * temprt
d/dt en = endot
Vectr d/dt d = al * (en - d)
----------------------------------- offset display
ENP = enp - scale | dispt ENP



The rotation matrix A representing our plane rotation is a useful abstraction;
this becomes evident when we want to rotate several vectors x1, x2, …
through the same angle theta:

Vector y1 = A * x1 | Vector y2 = A * x2 | . . . . . . . .

Three-dimensional rotation matrices are useful in flight simulations.

3-15. State-equation Models for Linear Control Systems

Modern textbooks [4] describe linear control systems by vector equations,
which we represent in the computer-readable form

Vectr d/dt x = A * x + B * u
Vector y = C * x + D * u

x ≡ (x1, x2, … ) is a vector of state variables, and u and y are vectors of system
input and output variables. The matrices A, B, C, and D define the plant and

74 Programs with Vector/Matrix Operations and Submodels

+

>

0

–
0 0.1 0.2

scale = 200 enp vs. t

FIGURE 3-2b. Time-history plot of the reactor heat output enp generated by the program of
Figure 3.2a. When the control increases the reactivity r, the chain reaction raises the reactor
temperature. In the educational TRIGA reactor, this in turn reduces the reactivity, so that a
short and safe power pulse results (based on Reference [1]).



controller and can be functions of the time t. Linear sampled-data control sys-
tems can be similarly described with vector sampled-data assignments [4].

USER-DEFINED FUNCTIONS AND SUBMODELS

DESIRE experiment-protocol scripts can define new functions and submod-
els as reusable language extensions. In subsequent DYNAMIC program seg-
ments, the DESIRE compiler invokes these subprograms as fast inline code
without runtime function-call/return overhead.

Similar to vectors, user-defined functions and submodels are more than
shorthand notations. They can be meaningful abstractions that make a simu-
lation model much easier to understand, not just easier to program. Function
and submodel definitions can be collected in library files for reuse. 

3-16. User-defined Functions

Experiment-protocol scripts can create user-defined functions with FUNC-
TION declarations such as

FUNCTION abs2d(u$, v$) = sqrt(u$^2 + v$^2)

Once declared, the new function can be invoked in the experiment protocol or
in a DYNAMIC program segment, say, with

RR = abs2d(x, y)

which would be exactly equivalent to the assignment RR = sqrt(x^2 + y^2).
DESIRE returns an error when declaration and invocation arguments do not
match.

A function definition must fit one program line, but one should remember
that a program line can be extended into another line on the display or listing.
We marked the dummy arguments u$, v$ with dollar signs so that they can
be recognized easily, but this is not necessary. Dummy arguments must not
be subscripted. Dummy-argument names are “protected” to prevent “side
effects”. This means that any attempt to use their names after the function
definition produces an error message. Function definitions may include con-
stant parameters and also variables other than the dummy arguments.

An invocation argument can be any expression legal in the invocation con-
text. Such expressions can include literals and subscripted variables. In exper-
iment-protocol scripts, invocation arguments can be previously declared
complex numbers or integers as well as real numbers. In DYNAMIC program
segments, invocation arguments can be real or vector expressions.
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User-defined functions can be collected in library files for reuse (Table 3-1).
Here are some useful examples based on Section 2-13:

FUNCTION max(aa, bb) = aa + lim(bb – aa)
FUNCTION tpulse(aa, bb) = swtch(t – aa) – swtch(t – bb) (aa < bb)

FUNCTION definitions may be nested, that is, they can contain previously
defined functions. But recursive definitions such as

FUNCTION f1(x) = f1(x) + 1

or

FUNCTION f1(x) = f2(1) + x | FUNCTION f2(y) = f1(y+1) 

and also recursive function calls, as in

FUNCTION incr(x) = x + 1 | q = incr(incr(incr(y)))

are illegal.

3-17. Submodels

(a) Submodel Declaration and Invocation
Submodels defined in the experiment protocol can be invoked in DYNAMIC
program segments to generate frequently used defined-variable operations
and/or differential-equation systems in a single invocation line. Sections 6-12
and 7-12 illustrate applications of submodels.
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TABLE 3-1. Some User-defined Functions*

FUNCTION max(x$, y$) = x$ + lim(y$ - x$)
FUNCTION min(x$,y$) = x$ - lim(x$ - y$)
FUNCTION cotan(x$) = cos(x$)/sin(x$)
FUNCTION asat(x$, alpha$) = alpha$ * sat(x$/alpha$) (alpha$ > 0)
FUNCTION bound(x$, alpha$, beta$) 

= lim(x$ - alpha$) - lim(x$ - beta$) + alpha$ (alpha$ < beta$)
FUNCTION relay(ctrl$, a$, b$) = b$ + (a$ - b$) * swtch(ctrl$)
FUNCTION tpulse(alpha$, beta$)

= swtch(t – alpha$) – swtch(t – beta$) (alpha$ < beta$)

* See also Chapter 2 and Ref. 3.



Submodels must be declared in the experiment-protocol script before they
are invoked in a DYNAMIC program segment. For example,

SUBMODEL quad(x$, y$, ydot$, a$, b$)
d/dt y$ = ydot$
d/dt ydot$ = x$ - a$ * y$ - b$ * ydot$
end

defines a differential-equation submodel representing a mass restrained by a
spring and viscous friction. Once a submodel is declared, it can be invoked in
any DYNAMIC program segment with appropriate variable or parameter
names substituted for each dummy argument. Assuming that the program has
previously assigned values to the invocation arguments input, y, ydot, w, r,
the submodel invocation

invoke quad(input, y, ydot, w, r)

generates compiled in-line code equivalent to

d/dt y = ydot
d/dt ydot = input – w * y – r * ydot

Submodel invocation arguments must be names of previously defined scalars,
vectors, or matrices, not expressions as for the user-defined functions in
Section 3-16. An error message gives a warning if declaration and invocation
arguments do not match. A submodel can be invoked as often as needed, with
the same or different invocation arguments. 

Submodel definitions may contain any legal DYNAMIC-segment assign-
ments and differential equations, including vector/matrix operations.
Submodel definitions can use scalar and array variables as dummy arguments
and may also involve additional variables and parameters common to all
invocations. As in the case of user-defined functions (Section 3-16), it is con-
venient to label dummy arguments such as x$ with a dollar sign, but this is
not necessary. After a dummy-argument name is used in a submodel declara-
tion, it can no longer be used elsewhere; it is “protected” by an error message
to prevent side effects. Program displays and listings automatically indent
definition lines, as shown in our example.

The experiment protocol must declare arrays for subscripted variables,
vectors, or matrices used as invocation arguments in DYNAMIC program
segments; note that different array dimensions can be used for different invo-
cations. Arrays used as dummy arguments in SUBMODEL declarations must
also be declared. Since such dummy arrays are never filled with actual val-
ues, memory can be saved by setting all dummy-array dimensions to 1.
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In the submodel defined by

SUBMODEL normalize(v$, v1$)
DOT vnormsq = v$ * v$ | vnn = 1/sqrt(xnormsq)
Vector v1$ = vnn * v$
end

the scalars vnormsq and vnn are “global” parameters used as intermediate
results in all instances of the submodel. When one wants to invoke normal-
ize to obtain normalized versions U and V of two different vectors u and v by
programming

invoke normalize(u, U) | invoke normalize(v, V)

the dummy arrays v$, v1$ and the invoked arrays u, U, v, V, must first be
declared, say, with

ARRAY v$[1], v1$[1] | ARRAY u[m], U[m], v[n], V[n]

Submodel definitions can contain user-defined functions and may invoke
other submodels (nested submodels). But nested and recursive submodel def-
initions, and also recursive submodel invocations, are illegal. 

(b) Submodels with Differential Equations
For submodels involving differential equations (d/dt or Vectr d/dt statements)
all invoked differential-equation state variables must be declared with STATE
declarations in the experiment protocol (Section 3-1). This is necessary even
for scalar state variables, not just for state-variable arrays. But dummy state
variables do not need STATE declarations for they are never used in actual dif-
ferential equations. For example, the definition and invocation of the
mass–spring submodel quad(x$, y$, ydot$, a$, b$) in Section 3-17a requires
the declaration

STATE y, ydot

but the dummy variables y$ and ydot$ need not be declared as state variables.

3-18. Dealing with Sampled-data Assignments,
Limiters, and Switches 

A user-defined function involving sampled-data assignments, limiters and/or
switches (Table 3-1) generates only one line of DYNAMIC-segment code, and
can be thus programmed following an OUT, SAMPLE m, or step statement as
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discussed in Sections 2-10 and 2-11. However, submodels can generate multi-
ple lines that cannot be separated by OUT, SAMPLE m, or step statements in
a submodel definition. As a result, a submodel must generate only differential-
equation-system (“analog”) code, only limiter/switch operations operating on
analog variables, or only sampled-data operations. Sampled-data assignments
can safely include limiter/switch operations.

It is then, strictly speaking, incorrect to invoke the submodel defined by

SUBMODEL signal(y$, p$, w$)
d/dt y$ = w$ * p$
p$ = sgn(p$ - y$)
end

to produce triangle waves and square waves in the manner of Section 2-17.
Serendipitously, the resulting code usually works anyway, presumably
because we are only integrating a constant input equal to either a or –a.
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4
Parameter-influence Studies,
Model Replication, and 
Monte Carlo Simulation

PARAMETER-INFLUENCE STUDIES AND VECTORIZATION

4-1. Exploring the Effects of Parameter Changes

Parameter-influence studies explore effects of different combinations of
model and experiment parameters. Initial state-variable values are treated
simply as extra model parameters. For a system of differential equations or
difference equations, for example,

(d/dt) x = f(t; x, y; a, b, …)  y = g(t; x; c, d, …) (4-1)

with suitably differentiable functions f and g, we can measure the sensitivity of
x = x(t) and y = y(t) to small changes in the parameter a by computing time his-
tories of the parameter-sensitivity coefficients u(t) ≡ ∂x/∂a and v(t) ≡ ∂y/∂a.
Differentiation of the system equations (4-1) with respect to the parameter a
produces the differential-equation system

(d/dt)u = (∂f/∂x)u + (∂f/∂y)v  + ∂f/∂a ∂y/∂a = (∂g/∂x)u (4-2)

Advanced Dynamic-system Simulation: Model-replication Techniques 
and Monte Carlo Simulation By Granino A. Korn
Copyright © 2007 by John Wiley & Sons, Inc.
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In principle, the parameter-sensitivity equations (4-2) can be solved together
with the given system equations (4-1) to produce time histories of u and v.

Parameter-influence coefficients are theoretically interesting. But for a
system with N equations [Eq. (4-1)], in general, 2N equations (4-1) and (4-2)
have to be solved even when only the sensitivity of one system variable to a
single parameter is needed. Even that reveals only effects of small parameter
changes. It is usually easier to just solve the given system equations for
different parameter combinations (Sections 4-2 and 4-3).

Monte Carlo simulation with randomly perturbed parameter values (Section
4-4) is also a form of parameter-influence study and permits, for instance, sta-
tistical regression of performance measures on parameter values [1].

4-2. Repeated Runs and Model Replication (Vectorization)

(a) A Simple Repeated-run Study
Repeated-run parameter-influence studies simply repeat simulation runs with
different parameter values. As an example, the response x(t) of a damped har-
monic oscillator after an initial displacement x(0) = 1 is modeled by the
DYNAMIC program segment

DYNAMIC

d/dt x = xdot

d/dt xdot = - ww * x - r * xdot

X = x - scale  | -- offset the display

dispt X  |  --                         display (4-3)

We let xdot(0) default to 0. A small repeated-run parameter-influence study
explores the effects of different positive damping coefficients r with the
experiment-protocol script

TMAX = 0.5 | DT = 0.0001 | NN = 1001

ww = 400 | -- fixed system parameter 

x = 1  | -- given initial displacement

n = 5  | -- number of simulation runs

for i = 1 to n  |  -- set parameter values

r = 5 * i

drunr
next (4-4)
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This experiment protocol calls n = 5 simulation runs of the model (4-3) with
the damping coefficient r successively set to 5, 10, 15, 20, and 25 (Figure 4-1).

(b) Model Replication
Instead of repeating simulation runs with different parameter values, a single
simulation run can exercise n = 5 replicas of the model with different param-
eter values. We replicate the model (4-3) by declaring the state variables 
x, xdot and the parameter r as n-dimensional vectors

x ≡ (x[1], x[2], …, x[n]) xdot ≡ (xdot[1], xdot[2], …, xdot[n])   
r ≡ (r[1], r[2], …, r[n])

This is done with the new experiment-protocol script

TMAX=0.5 | DT=0.0001 | NN=1000

ww = 400 | --  fixed system parameter

-----------------------------------------------------------

n = 5 | STATE x[n], xdot[n]  |  ARRAY r[n]

----------------------------------------------------------

for i = 1 to n  

x[i] = 1 | -- set n  initial displacements

r[i] = 5 * i | --    set n parameter values

next

drun (4-5)

FIGURE 4-1. Linux dual-screen display of the small repeated-run study in Section 4-2a.
Double-clicking the file newdamp.lst in the file-manager window on the right has loaded the
program into DESIRE. The original display was in color.



This script “fills” the parameter array r with the n desired parameter values1

r[1] = 5, r[2] = 10, r[3] = 15, r[4] = 20, r[5] = 25 (4-6)

Next, a new DYNAMIC program segment replaces the model (4-3) with the
corresponding vectorized model 

DYNAMIC

-----------------------------------------------------------

Vectr d/dt x = xdot

Vectr d/dt xdot = – ww * x – r * xdot

dispt x[1], x[2], x[3], x[4], x[5] | -- display 5 curves (4-7)

DESIRE’s vectorizing compiler (Sections 3-2 and 3-3) automatically com-
piles this vector model into n replicated scalar state-equation systems

d/dt x[i] = xdot[i]
d/dt xdot[i] = – ww * x[i] – r[i] * xdot[i] (i = 1, 2, …, n) (4-8)

The n state-variable initial values xdot[i] default to 0, and ww is a scalar
parameter common to all n models. Our program effectively replicates the
original model (4-3) n times with different parameter values [Eq. (4-6)] and
exercises all n replicated models in a single simulation run. The resulting
solutions x[1], x[2], x[3], x[4], x[5] are exactly the same as the solutions x
obtained for r = 5, 10, 15, 20, 25 in Figure 4-1. 

The DESIRE vector compiler makes model replication automatic.
Vectorization works for both differential-equation systems and sampled-data
assignments. Replicated models can involve user-defined functions, table-
lookup functions, and submodels; each function or submodel definition is
necessarily the same for all n models. Vector and matrix operations (Chapter 3),
and also time delays and store/get operations (see the DESIRE reference
manual in CD) cannot be replicated.

Model replication improves computing speed by eliminating the runtime
loop and run-starting overhead of repeated-run studies. Model replication
requires extra memory; a compact vector model can generate a large equation
system. DESIRE currently admits up to 150,000 double-precision defined
variables, plus up to 40,000 differential-equation state variables for fixed- and
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1 Instead of filling state and parameter arrays with a program loop, array elements can also be
given individual assignments such as b[17] = 9.8887, and multiple vector arrays can be filled with
a single data/read assignment such as data 0.1, – 7.8, cos (gamma), 12.1, …  read b,x
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variable-step Runge–Kutta integration rules. This is enough for 1000 40th-
order differential-equation models. Our variable-step/variable-order Gear-
type and Adams integration rules need more memory and are therefore limited
to 600 state variables. For larger problems, there is an easy combination tech-
nique: we simply program repeated runs of a vectorized model with new
parameter values (Section 4-11).

(c) Dealing with Multiple Parameters
Our example varied only one parameter, but we can readily deal with multiple
parameters. Suppose we have a variable parameter a with n1 = 4 values

– 5.0, – 2.0, 3.0, 4.0 

and a second variable parameter b with n2 = 3 values,

2.7, 0, 10.0

Our experiment-protocol script must then assign the n = n1 * n2 = 12
values 

– 5.0, – 2.0, 3.0, 4.0; – 5.0, – 2.0, 3.0, 4.0; – 5.0, – 2.0, 3.0, 4.0 

to a[1], a[2], …, a[n], and also the corresponding n values 

2.7, 2.7, 2.7, 2.7; 0, 0, 0, 0; 10.0, 10.0, 10.0, 10.0

to b[1], b[2], …, b[n]. To simplify this task, we declare and fill an n1-dimen-
sional array aa and an n2-dimensional array bb with

n1 = 4 | n2 =3 | ARRAY aa[n1], bb[n2]
data  – 5.0, – 2.0, 3.0, 4.0; 2.7, 0, 10.0 | read aa, bb

We now declare and fill the desired n-dimensional parameter arrays a and
b with

n = n1 * n2   |    ARRAY a[n],b[n]
for k = 1 to n2

for i = 1 to n1 
a[i + (k - 1) * n1] = aa[i] | b[i + (k - 1) * n1] = bb[k] 
next

next

The [i + (k – 1) * n1] th model has the parameter combination aa[i], bb[k].
The smaller arrays aa and bb are much easier to read, write, and store than
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the repetitious a and b arrays.  This procedure can be extended to three or
more parameters.

4-3. Programming Parameter-influence Studies 

(a) Introduction
Before vectorizing a model, we usually check it out in scalar form. This also
simplifies sorting defined-variable assignments (Sections 1-9 and 2-1). When
the simulation works, one will want to program output procedures specifi-
cally designed to evaluate the effects of changing parameters.

Our toy example was simple enough. But real parameter-influence studies
involve multiple parameters and possibly very many parameter combina-
tions. We must vary

• the design parameters that we want to optimize under different conditions,
• parameters that represent these different conditions (e.g., different tem-

peratures and different initial conditions).

As we noted in Section 1-17, simulations quickly produce large volumes
of time-history graphs and numerical tables. Meaningful evaluation of such
results is a very real problem.

DESIRE experiment-protocol commands can list successive parameter set-
tings and simulation results—even entire arrays—in a journal file.2 This pre-
serves the data, but may not relate successive results in a meaningful way. A
better plan is to let experiment-protocol scripts or DYNAMIC program seg-
ments write data tables directly into space-delimited text files. These can then
be fed to standard spreadsheet and relational-database programs for analysis
(data mining), presentations, and storage. DESIRE experiment-protocol
scripts can readily access external programs and exchange file data with them.

(b) Measures of System Effectiveness
A system combines hardware, people, and/or modes of operation for some
purpose. Then, the very definition of an engineering system requires that
quantitative measures of its effectiveness be defined. These measures are nor-
mally numerical functions of system parameters. We often use cost-related
functionals such as integrals of system-variable time histories, such as the
control-system error measures in Section 1-14. Parameter-influence studies
must define effectiveness measures and compute their values for each param-
eter combination.

2 Refer to the DESIRE reference manual in the book CD.
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We shall want to maximize measures of system effectiveness (or minimize
cost measures) as functions of system parameters. More often than not, how-
ever, practical design is not the result of straightforward global optimization
but involves compromises:

• Conflicting measures (say cost and performance) may need individual
consideration—a single measure (e.g., performance per unit cost) may
not do.

• One may have to compromise between performance results obtained
under different conditions (e.g., different signal amplitudes, tempera-
tures, or initial conditions).

Simulation results are only raw material for making such decisions. The
user has to make intelligent compromises.

(c) Crossplotting Results
Consider a model producing a performance measure such as the control-
system integrated squared error ISE in Section 1-14,

d/dt ISE  =  (x – u)2 (ISE, integral squared error) (4-9)

Its value ISE = ISE(t0 + TMAX) at the end of a simulation run can be a useful
control-system performance measure. To see clearly how ISE depends on a
system parameter, say the servo damping coefficient r, we may want to plot a
graph of ISE versus r.

1. An n-run repeated-run study (Section 4-2a) makes n simulation runs
with n parameter values of r = r0, r0 +  DELr, r0 + 2 DELr, … and pro-
duces a corresponding ISE value [Eq. (4-9)] at the end of each run. If a
runtime time-history display is not needed, the experiment-protocol
script can crossplot ISE versus r as successive runs proceed:

for i = 1 to n
r = r + (i – 1) * DELr
drun
plot r, ISE, c  | --  (c = 1, 2, …  is a graph color)
reset
next

Instead, one may want to watch a runtime time-history display and save cor-
responding values of r and ISE in two n-dimensional arrays declared with 

ARRAY rr[n], ise[n]
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The plot line in the above script loop can be simply replaced with

rr[i] = r | ise[i] = ISE

One can then plot, cross-list, and analyze corresponding ise[i] and r[i] values
later on.

2. A replicated-model (vectorized) study (Section 4-2b) inherently
implies declaration of an n-dimensional parameter array (vector) r and
an n-dimensional state vector ISE. The experiment-protocol script fills
the r array and makes a single simulation run:

ARRAY r[n], …  |    STATE x[n], … , ISE[n]
. . . . . . . . . . . . . . . . . . . . . .
for i = 1 to n  |  -- set parameter values

r = r0 + (i –1) * DELr
next

-------------------------
drun

The corresponding n-dimensional arrays (vectors) r and ISE are then avail-
able for crossplotting, or for any other purpose.

(d) Maximum/Minimum Selection
If there is an n-dimensional array (vector) of performance-measure values,
say the array ISE in Section 4-3c, the maximum-selection techniques of
Section 3-8 can conveniently determine the index i = I of the largest or
smallest performance-measure value ISE[i] and compute that value. One
should remember, though, that maximum/minimum selection works only in
DYNAMIC program segments and is therefore more easily applied in vec-
torized parameter-influence studies than in repeated-run studies.

(e) Iterative Parameter Optimization
Parameter-influence studies produce performance measures as functions F(a,
b, …) of parameter values a, b, … . Repeated-run simulation studies can
relate a selection of successive parameter combinations a, b, … to past results
in such a way that F(a, b, …) converges to its global maximum or minimum. 

A primitive experiment protocol for minimizing F might simply change one
parameter at a time in the direction that turns out to decrease F. This may work
if F(a, b, …) is continuous and has only one minimum and no “flat spots”
where it is locally constant. As an example, the following experiment-protocol
script finds the value of a servomechanism damping coefficient r that mini-
mizes the integral squared error ISE (see also Section 1-14).
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(set TMAX, DT, parameters, and initial conditions … )
. . . . . . . . . . . . . . . . . . .
drun  |  -- initial run with trial value r produces ISE 
repeat

oldISE = ISE
r = r + DELr   |  -- increment r
reset   |   drun   |  -- run with r + DELr
DELISE = ISE - oldISE  |  -- measure the gradient
if abs(DELISE) < crit then exit | -- no more change
else proceed
r = r - DELr - opgain * DELISE   |  -- working step 
reset   |   drun
until 0 > 1   |  --  keep trying

write ‘optimal values: r = �;r,�ISE = �;ISE | -- report result

Such simple one-parameter optimizations make nice demonstrations [2], but
real-life optimization studies are usually far more difficult. They must handle
multiple parameters and performance-measure “landscapes” with flat spots
and local minima. Every parameter-improvement step will require multiple,
cleverly designed trial evaluations of F(a, b, …). Parameter optimization is a
complicated subject requiring separate study [3]. For serious optimization
projects, the simulation experiment protocol may have to interact with an
external specialized optimization program [3].

RANDOM PROCESSES AND RANDOM PARAMETERS

4-4. Random Processes and Monte Carlo Simulation

A random process generates sample functions x(t) that depend on random
parameters, random initial conditions, and/or random inputs. By “random”
we mean quantities whose behavior can be predicted only by the values of
statistics. Statistics are functions of repeated measurements, for example,
sample averages and statistical relative frequencies. We use statistics because
serendipitous experience indicates that suitably defined statistics often fluc-
tuate less than individual measurements and are thus more predictable.
Statistics, in fact, often fluctuate less and less as the sample size increases.3

3 This fortunate fact—an empirical law of large numbers—is not derived from probability theory
but is based on observations, just like a law of nature in physics. Similar mathematical laws of
large numbers (e.g., the central limit theorem) relate to expected values and probabilities, that is,
to properties of models. Validation of mathematical laws by empirical laws of large numbers
indicates that specific probability models can match and predict real-world experience.
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Probability models describe random processes in terms of joint probabil-
ity distributions of different sample values x(t1), x(t2), … [4,5]. Such models
try to fit observed statistics with theoretical concepts such as probabilities
and expected values. A random process is stationary if its joint probability
distributions are unaffected when we shift the time origin by adding the same
time shift τ to all sampling times ti.

We are going to simulate random processes generated by dynamic systems
with random parameters (this includes random initial conditions) and/or ran-
dom time-function inputs (noise). A Monte Carlo simulation study repeats or
replicates simulations of such systems to produce a sample of different random-
process sample functions x(t). We then compute statistics such as sample aver-
ages over corresponding values read from different sample functions. Monte
Carlo statistics typically measure various aspects of system performance.

4-5. Generating Random Parameters and Random Initial Values

Experiment-protocol scripts generate random parameter values a, b, … with
assignments such as

a = ran() | b = cos(ran()  + c) | …

State-variable initial values are simply additional parameters. Each call of the
DESIRE library function ran() produces a new sample of a pseudorandom-
noise sequence. Pseudorandom noise is really not random but a programmed
number sequence that repeats after a large number of samples. ran() output is
uniformly distributed between –1 and 1 with theoretical mean 0 and variance
1/3. Different samples are uncorrelated but not statistically independent; this
problem will be discussed in Section 5-4. The experiment-protocol command
seed m can start or restart the noise sequence with a specific fixed value.
This can be useful for testing programs.

Various functions of the uniformly distributed ran() output can produce
samples with different known probability distributions (see the references to
Chapter 5). Sums y = ran() + ran() + … with 4–7 terms are approximately
Gaussian with mean 0 and variance N/3, where N is the number of terms. But
multiple samples of y are not necessarily jointly Gaussian.

MONTE CARLO SIMULATION OF DYNAMIC SYSTEMS

4-6. Repeated-run Monte Carlo Simulation 

(a) Taking Statistics on Repeated Simulation Runs
Repeated-run Monte Carlo simulation programs loop to exercise a
DYNAMIC program segment n times with new random inputs and then take
statistics on the results. 



90 Parameter-influence Studies, Model Replication, and Monte Carlo Simulation

In the following experiment-protocol script, each of n passes through a
program loop assigns new random values to a parameter b and to a state-
variable initial value q(0) and then calls a simulation run. The n successive
simulation runs produce end-of-run sample values x[i] = x(t0 + TMAX) of a
system time history x(t) for i = 1, 2, …, n. x can be a state variable or a defined
variable; it is usually a system-performance measure similar to ISE in Section
4-3. After completing n runs, the program computes 

• the sample average xAvg = <x> = (x[1] + x[2] + … + x[n])/n 
• the sample mean square xxAvg = <x2> = (x2[1] + x2[2] + … +

x2[n])/n
• the sample variance xVar = xxAvg – xAvg2.

We employ the convenient DOT operations described in Section 3-7 to pro-
duce the n-term sums xSum and xxSum needed to compute xAvg and
xxAvg.

(first set fixed system parameters, initial conditions, etc. ...... )

n = 1000 |  ARRAY x[n]  | -- declare an array of sample values
--
for i = 1 to n   |  -- Monte Carlo loop

b = b0 + B * f1(ran())  | -- set a new random parameter value
q = q0 + C * f2(ran()) | -- set a new random initial value
--
drunr   |  -- make a simulation run and reset state variables
x[i] = X | -- read successive sample values of x =X(t0 + TMAX)
next

-- now compute statistics
DOT xSum = X * 1     |    xAvg = xSum/n
DOT xxSum = x * x    |    xxAvg = xxSum/n

xVar = xxAvg - xAvg^2    |    s = sqrt(xVar)

drunr (or drun | reset) calls a simulation run and then resets differential-
equation-system initial values.4

It would be just as easy to take statistics on two or more performance meas-
ures x, y, …. More complicated statistics such as correlation and regression
coefficients, probability and probability-density estimate, and test statistics
such as t and �2 can all be computed as functions of various sample averages
(see also Section 4-9). As always, Monte Carlo results have to be checked with
different pseudorandom-noise generators (see also Section 5-11).

4 For simplicity, we have assumed that the only state variables are differential-equation state
variables (see also Section 2-5).
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(b) Sequential Monte Carlo Studies
Instead of computing Monte Carlo statistics after n repeated simulation runs,
we can accumulate sample averages after every simulation run. The follow-
ing experiment-protocol script first initializes the sample averages xAvg and
xxAvg and then again loops to make n simulation runs with new parameter
and initial-condition values. At the end of the ith run, the program reads x =
x(t0 + TMAX) = x(i) and updates the statistics values:

xAvg = 0  |   xxAvg = 0  |  -- initialize statistics computation
for i = 1 to n   |  -- Monte Carlo loop

b = b0 + B * f1(ran())  | -- set a new random parameter value
q = q0 + C * f2(ran()) | -- set a new random initial value
--
drunr | -- make a simulation run and reset state variables
x[i] = X | -- read successive sample values of x =X(t0 + TMAX)
------------------------------------------------ now accumulate statistics!
xAvg = xAvg + (x - xAvg)/n   
xxAvg = xxAvg + (x^2 - xxAvg)/n
xVar = xxAvg - xAvg^2   

next   |  -- and loop back

This technique can save time, for it permits us to terminate the study when
the sample variance has become sufficiently small (sequential Monte Carlo
simulation).

(c) Example: Effects of Gun-elevation Errors on the 1776 Cannon
We will study a continuous random process generated by a differential-
equation system with a random parameter, specifically a random initial value.
Similar programs apply directly to many Monte Carlo studies of manufactur-
ing-tolerance effects.

Simulation of the 1776 cannon5 in Figure 4-2 has been used as a textbook
problem for over 50 years [6,7]. Assuming that the wind force W(t) is zero, the
only forces acting on the spherical cannonball are its weight mg and aerody-
namic drag opposing the velocity vector. Airspeed is relatively low, so that the
drag is roughly proportional to the square of the velocity. Referring to Figure
4-2, the equations of motion in the horizontal and vertical directions are 

(d/dt) x = xdot (d/dt) xdot = – R v2 cos θ = – R v xdot
(d/dt) y = ydot (d/dt) ydot = – R v2 sin θ – g = – R v ydot – g

51776 gun elevations were not really affected by manufacturing errors. Elevations of land-based
guns were usually set with wedges under the rear part of the barrel, and naval-gun elevation also
required judgment of the ship’s roll angle. Either way, there were lots of random errors.
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with

v = sqrt(xdot2 + ydot2)

The acceleration due to gravity g = 32.2 ft/s2 and R = 7.5E-05 ft–1 is the drag
coefficient divided by the projectile mass. The trajectory of each shot is then
determined by the initial muzzle position x(0) = y(0) = 0 and the initial veloc-
ity components

xdot(0) = v0 * cos(theta0) ydot(0) = v0 * sin(theta0) (4-10)

theta0 is the gun elevation angle, and v0 = 900 ft/s is the given muzzle velocity. 
Assuming level ground, the impact abscissa xI is the value of x where y = 0

at the end of a trajectory. A good way to read xI is with the track-hold differ-
ence equation 

xI = xI + swtch(y) * (x - xI)

(Section 2-16b), which causes xI to track x while and then holds the x
value. The initial value of the difference-equation state variable xI defaults to 0.
To aim the cannon, we set the elevation angle theta0 to obtain a desired
impact abscissa xI, say theta0 = 70 * PI/180. Our Monte Carlo study then
adds random perturbations to this nominal gun elevation and determines their
effect on the sample average and sample variance of the impact coordinate xI.
To get approximately Gaussian-distributed elevation errors, we set 

theta0 = 70 * PI/180 + a * (ran()+ran()+ran()+ran())

y
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FIGURE 4-2. Cannon geometry (based on Reference [6]). We assume that the wind force
W(t) is zero.



Since ran() is uniformly distributed between –1 and 1 with expected value
0 and theoretical variance 1/3, we have

E{theta0} = 70 PI/180                     Var{theta0} = 4 * a2/3

Figure 4-3 shows time histories of x(t) and the track-hold output xI(t) for a
few simulation runs together with the complete program for the repeated-run
Monte Carlo study. The program also displays the resulting sample average
xavg and the sample statistical dispersion s = sqrt(abs(xxavg – xavg^2)) of
the impact abscissa xI after n runs.

4-7. Vectorized (Model-replicating) Monte Carlo Simulation

(a) Vectorized Monte Carlo Study of the 1776 Cannon Shot
Model-replicating or vectorized Monte Carlo simulation was originally
developed for supercomputer studies of small physics models, where the
repeated-run program overhead is especially significant. As we saw in
Section 4-2b, our vector compiler conveniently implements vectorization on
inexpensive personal computers, where its advantages—simpler programs
and high speed, at least for small models—are welcome indeed. As an added
bonus, vectorization can also help check the quality of pseudorandom noise
(Section 5-10).

Instead of repeating simulated cannon shots as in Section 4-6, the experiment
protocol in Figure 4-4 declares n-dimensional state-variable and arrays (vectors)

STATE x[n], y[n], xdot[n], ydot[n] | ARRAY theta0[n], v[n], xImpact[n]

and loops to “fill” each of the arrays theta0, xdot, and ydot with n different
random initial values:

for i = 1 to n   |  --  noisy elevation angle in radians
theta0[i] = 70 * PI/180 + a * (ran()+ran()+ran()+ran())
xdot[i] = v0 * cos(theta0[i])  |  ydot[i] = v0 * sin(theta0[i])
next

A vectorized DYNAMIC program segment then effectively replicates the
cannonball model and the output track/hold operation n times:

Vector v = sqrt(xdot^2 + ydot^2)   |  --  a defined variable
Vectr d/dt x = xdot   |    Vectr d/dt y = ydot   |  --  equations of motion
Vectr d/dt xdot = - R * v * xdot   |   Vectr d/dt ydot = - R * v * ydot - g
--
step
Vector xImpact = xImpact + swtch(y) * (x - xImpact)  | --    track-hold
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—   REPEATED-RUN MONTE CARLO: 1776 CANNON
----------------------------------------------------------------------------------------------------
DT = 0.008  |  TMAX = 50 |  NN = 5000  |  scale=5000
----------------------------------------------------------------------------------------------------
R = 7.5E-05 |  g = 32.2
v0 = 900  |  –– muzzle velocity
a = 0.03  | –– noise amplitude
––
n = 1000  |  ARRAY xImpact[n] | –– sample values
––
for i = 1 to n  |  –– elevation in radians

xI = 0  | –– initialize track-hold
theta0 = 70 * PI/180 + a * (ran()+ran()+ran()+ran()) 
xdot = v0 * cos(theta0)   |   ydot = v0 * sin(theta0)
drunr  |  display 2  |  ––     run, don’t erase display
xImpact[i] = xI   |  ––   read the impact abscissa xI
next

– – COMPUTE STATISTICS AFTER n RUNS
– –
DOT xSum = xImpact * 1    |   xAvg = xSum/n
DOT xxSum = xImpact * xImpact   |   xxAvg = xxSum/n
s = sqrt(abs(xxAvg - xAvg^2))   | – –       dispersion
write “xAvg = “;xAvg,” s = “;s
--------------------------------------------
DYNAMIC
--------------------------------------------
v = sqrt(xdot^2 + ydot^2)
d/dt x = xdot   |   d/dt y = ydot
d/dt xdot = - R * v * xdot   |  d/dt ydot = - R * v * ydot-g
– –
step
xI = xI + swtch(y) * (x - xI)  | – –  hold the impact abscissa
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Figure 4-4 shows the complete program. The vectorized cannonball study
produced essentially the same results as the repeated-run study, as
expected. 

One thousand repeated runs and the statistics computation took 5 s on a
2.4-GHz Athlon64, and the equivalent vectorized study took 3.4 s. This
speed advantage is typical for small models. The repeated-run overhead
saved by vectorization becomes less significant as the model size
increases.

-- VECTORIZED MONTE CARLO STUDY: 1776 CANNON
----------------------------------------------------------------------------------------------------
DT = 0.008  |   TMAX = 50  |   NN = 5000   |  scale=5000
R = 7.5E-05  |   g = 32.2
v0 = 900  |  -- muzzle velocity
a = 0.03  |  -- noise amplitude
--
n = 1000  |  STATE x[n], y[n], xdot[n], ydot[n]
ARRAY theta0[n], v[n], xImpact[n]
--
for i= 1 to n   |  -- noisy elevation angle in radians

theta0[i] = 70 * PI/180 + a * (ran()+ran()+ran()+ran())
xdot[i] = v0 * cos(theta0[i])  |  ydot[i] = v0 * sin(theta0[i])
next

-- make a single simulation run …
drun   | … and then compute statistics
--
DOT xSum = xImpact * 1   |   xAvg = xSum/n
DOT xxSum = xImpact * xImpact   |   xxAvg = xxSum/n

s = sqrt(xxAvg - xAvg^2)
write “xAvg = “;xAvg,” s = “;s
----------------------------------------------------------------------------------------------------
DYNAMIC
----------------------------------------------------------------------------------------------------
Vector v = sqrt(xdot^2 + ydot^2)
Vectr d/dt x = xdot   |   Vectr d/dt y = ydot
Vectr d/dt xdot = - R * v * xdot   |   Vectr d/dt ydot = - R * v * ydot - g
--
step
Vector xImpact = xImpact + swtch(y) * (x - xImpact)  | -- n track-holds

FIGURE 4-4. Complete program for a vectorized Monte Carlo study of the 1776 cannonball
problem.  All initial xImpact[i] default to 0.

FIGURE 4-3. This repeated-run Monte Carlo study determines the impact-range dispersion
of a 1776 cannon shot due to random elevation-setting errors. A track-hold difference equation
(Section 2-16b) holds the impact coordinate.
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(b) Interactive Monte Carlo Simulation: Computing Time Histories of
Statistics with Compiled DOT Operations
Vectorized Monte Carlo simulation has another interesting and important
feature. Since a single simulation run samples all n replicated models at each
point of time, one can compute and display time histories of statistics, and
observe the results of parameter changes as the simulation run proceeds.
Such interactive Monte Carlo simulation was formerly possible only with
very fast (and very inaccurate) analog computers [7].

Runtime statistics computations are needed only at output-sampling times,
not at every derivative call. We will thus save time by programming
DYNAMIC-segment statistics computations following an OUT or SAMPLE
m statement (Section 1-6). As noted in Section 4-6a, most statistics are func-
tions of sample averages. A vectorized DYNAMIC program segment com-
putes the sample averages

qAvg(t) = (q[1] + q[2] + … + q[n])/n         
qqAvg(t) = (q2[1] + q2[2] + … + q2[n])/n

of a replicated system variable q = q(t) at each sampling time t with

OUT
DOT qSum = q * 1 | qAvg = qSum/n
DOT qqSum = q * q | qqavg = qqSum/n

The value of 1/n can be precomputed by the experiment protocol to avoid
time-consuming divisions by n. Unlike in Section 4-6, we are using compiled
DOT operations that, like DESIRE vector assignments, involve no program-
loop overhead (Section 3-7). 

We could add runtime computation of xAvg(t) and yAvg(t) to the vector-
ized cannonball study in Figure 4-4 and display the average trajectory (graph
of yAvg(t) versus XAvg(t)). We shall exhibit more interesting applications in
Sections 5-8 and 5-9.

4-8. Statistical Relative Frequencies, Sample Ranges,
and Other Statistics

For any random variable x in our Monte Carlo model, the sample statistical
relative frequency hh of an event {a < x < b} (a < b) is the fraction of our n
process samples where a < x < b is true. hh estimates the probability of the
event. Instead of counting events, we measure hh as the sample average
uAvg of the indicator function

u(x) ≡ swtch(x – a) – swtch(x – b) (a < b) (4-11)
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In the open class interval (a, b), u(x) = 1 and is 0 elsewhere (see also Section
2-8b). We find the desired statistical relative frequency hh easily and quickly
with DOT hh = u * 1.

Statistical relative frequencies can be computed as post-run Monte Carlo
statistics. Vectorized Monte Carlo studies can, instead, compute statistical
relative frequencies at each sampling point to produce their time histories.

For a given Monte Carlo sample (x[1], x[2], …, x[n]), the sample range
range = xmax – xmin is the difference between the largest value xmax and
the smallest value xmin in the sample. The DYNAMIC program segment of a
vectorized Monte Carlo study can compute xmax, xmin, and range at each
point of time to produce their time histories. With reference to Section 3-8, we
declare an n-dimensional vector xx and add the DYNAMIC-segment lines

Vector xx^ = x     |    DOT xmax = xx * 1
Vector xx^ = - x    |    DOT mxmin = xx * 1

The experiment-protocol script then computes range = xmax + mxmin. For
repeated-run Monte Carlo simulation, post-run computation of xmax and
xmin requires a search loop in the experiment protocol.

As we already noted, many other statistics (correlation and regression
coefficients, and test statistics such as t and χ2)[5] are functions of sample
averages. Post-run estimation of probability densities will be discussed in the
next section.

4-9. Post-run Probability-density Estimation [8,9]

(a) A Simple Probability-density Estimate
For continuous random variables x the probability density ϕx(X) for each
value X of x is approximated by

ϕx(X) ≈ Prob {X – h <– x < X + h}/2h = p/2h (4-12)

where 2h is a small class-interval width. For a given Monte Carlo sample
(x[1], x[2], ... , x[n]) of x-values, we again estimate p by the sample average
<u(x – X)> of an indicator function u(x – X) equal to 1 if X – h <– x < X + h
and 0 otherwise. Specifically, u(x – X) ≡ rect((x – X)/h), where rect(x) is the
library function defined in Fig. 2-5c. For small “window widths” 2h we thus
estimate the probability density ϕx(X) ≈ p/2h by

f(X) ≡ (1/2h) <rect [(x – X)/h]> ≡ (1/2hn) �
n

k=1
rect ((x[k] – X)/h) (4-13)
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For random samples of size n, 2hn f(X) has a binomial distribution with
success probability p, [4] so that

E{f(X)} = p/2h, Var{f(X)} = p(1 – p)/4nh2 (4-14)

and for small window widths h

E{f(X)} ≈ ϕx(X) Var{f(X)} ≈ ϕx(X)[1 – 2hϕx(X)]/2nh ≈ ϕx(X)/2nh (4-15)

Because good resolution (small h) implies fewer data points in each window
and thus larger estimate variances, probability-density measurement always
involves a compromise between resolution and variance. You may need a
large sample size n.

(b) Triangle and Parzen Windows [8,9]
We usually want to estimate ϕx(X) for multiple X-values and would like to fit
the estimated ϕx(X) values with a smooth curve. Estimates of ϕx(X) for dif-
ferent X-values separated by less than the window width 2h effectively use
some sample values more than once. Qualitatively speaking, this means that
a curve fitted to the estimate points can be smoothed and appears to exhibit
less fluctuation than individual measurements would.

Improved probability-density estimates attempt to enhance this effect. We
replace the rectangle-window estimate (21) with the sample average 

f(X) ≡ <k[(x – X)/h]/h> (4-16)

of a new bump-shaped kernel function k[(x – X)/h]/h centered on the
argument X of the desired estimate f(X). The window width h of a kernel
determines the spread of the bump and thus the resolution of the probability-
density estimate. h can be made smaller for larger sample sizes n. Our prim-
itive rectangular window rect[(x – X)/h]/2 “weights” all x-values falling into
its window equally and suppresses all others, but more general kernel func-
tions k[(x – X)/h] let x-values farther away from the argument value X con-
tribute to the sample average. Since ϕx(X) is continuous, this provides a sort
of interpolation and may reduce the estimate variance for a given resolution.

The probability-density estimate f(x) is correctly normalized if the kernel
function k(X) is normalized, so that

��
�
�
k(X) dX = 1 implies

��
�
�
f(X) dX = 1



Monte Carlo Simulation of Dynamic Systems 99

The estimate mean and variance cannot be derived as easily as in Eq. (14).
But it can be shown [10] that f(x) is an asymptotically unbiased and consis-
tent estimate of ϕx(X), and

Var{ f(X)} → (1/nh) ϕx(X) KK as n → ∞ with KK =
��

�
�

k2(q)dq (4-17)

provided that

��
�
�

k(X)dx < ∞, sup
(−�,�)

k(X)< ∞ lim
n→∞

[Xk(X)] = 0,

lim
n→∞

h(n) = 0 lim
n→∞

[nh(n)] = ∞

The rectangle-window estimate (13) is a special case of the estimate 
(16); here 

k(X) ≡ rect(X/h)/2 with KK = 1/2

The next-simplest example uses the triangle-window kernel

k(X) ≡ lim(1 – |X/h|) with KK = 2/3

In effect, this mixes x-values from three neighboring class intervals. But we
usually prefer the Parzen-window kernel

k(X) ≡ exp(–X2/2)/sqrt(2π) with KK = 1/[2sqrt(π)]

which gives some weight to all x-values. Its resolution-determining window
width h measures the spread of a Gaussian-shaped kernel function. 

(c) Computation and Display of Parzen Window Estimates
Given a post-run Monte Carlo sample (vector) x ≡ (x[1], x[2], …, x[n]), the
Parzen-window estimate of the probability density ϕx(X) is the average F(X)
of the n sample values

ff[i] = exp[– (X – x[i])2/2 h2] / [h * sqrt(2π)] (i = 1, 2, …, n) (4-18)

For each given sample size n, our choice of the window width h will be a
trial-and-error compromise between the X resolution and the smoothness of
the estimated probability-density curve. To use smaller window widths h, n
has to be increased.
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For post-run estimation of probability densities, we add the lines

ARRAY f[n]   |  --   declare a vector of sample values f[i] = ff[i]/n
irule 0 | --  this DYNAMIC segment handles only sampled data
t = 0    |   TMAX = 1
a = (select the range a = X2 – X1 of the X-sweep)

b = (select the starting value b = X1 of X)
NN = (select the number of estimated values)
h = (select the Parzen-window width)
alpha = 1/(2 * h^2)    |    beta = 1/(h * n * sqrt(2 * PI))
drun PARZEN 

at the end of our experiment-protocol script, say of Figure 4-3 or 4-4. These
script lines set parameter values and then execute an extra DYNAMIC pro-
gram segment labeled PARZEN, which will produce probability-density esti-
mates F(X) for NN values of x between x = X1 and X = X2 as t increases from
t = 0 to t = TMAX = 1.  Note that the values selected for NN, scale, and TMAX
are different from the values used for the simulation itself.

The extra DYNAMIC program segment computes and averages the expres-
sion (4-18) to produce NN values of F(X) between X = t0 and X = t0 + TMAX:

label PARZEN
--
X = a * t + b   |  -- this sweeps X from X1 to X2 as  t increases 
-- compute n samples  ff[i] = f[i]/n 
Vector f = beta * exp(- alpha * (X - x)^2))
DOT F = f * 1 | -- sum to average (note that 1/n is included in beta)
dispxy X, F

Note that x is a vector of sample values, and X is a scalar. The last line plots
F(X) versus X. Since F is always positive, we usually display FF = c * 
F – scale, where c is a scale factor. Figure 5-2c shows such a probability-
density display. The Parzen-window technique can be extended to multidi-
mensional probability distributions (Fig. 4-5).

4-10. Combining Vectorized and Repeated-run 
Monte Carlo Simulation

Since model replication effectively multiplies the number of state variables
by n, a simulation problem with many differential-equation state variables
may not fit a single vectorized Monte Carlo run. 6

6 Currently, DESIRE admits up to 40,000 (Linux) or 20,000 (Windows) differential-equation state
variables with Euler and fixed or variable-step Runge–Kutta integration (irule 2–7), or up to 600
state variables with more advanced variable-step/variable-order integration (irule 9–16). But realis-
tic simulations can involve over 100 differential equations, and we may want large sample sizes n.
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FIGURE 4-5. Two-dimensional Parzen-window probability-density estimates Fxy obtained with
Vector fxy = gamma * exp(– alpha * ((y – X)^2 + (y – Y)^2))
DOT Fxy = fxy * 1

(based on Reference [9]).
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This problem is easily solved: we simply repeat vectorized Monte Carlo
runs. nn repetitions of an n-dimensional vectorized simulation result in
the overall sample size M = n * nn. Figure 4-6 shows the experiment-
protocol script for a Monte Carlo study that loops to perform nn vector-
ized runs of our cannonball simulation. Each run again exercises n
replicated models.

-- REPEATED/VECTORIZED MONTE CARLO SIMULATION
----------------------------------------------------------------------------------------------------
DT = 0.008   |   TMAX = 50  |  N = 5000    |    scale=5000
----------------------------------------------------------------------------------------------------
R = 7.5E-05   |    g = 32.2
v0 = 900   |  -- muzzle velocity
a = 0.03    |  -- noise amplitude
--
n = 10  |  nn = 2  |  M = n * nn    |  -- sample size
STATE x[n], y[n], xdot[n], ydot[n]
ARRAY theta0[n], v[n], xImpact[n]
--
ARRAY xI[M]   | -- combined-sample array
--
for k = 1 to nn   | -- nn vectorized simulation runs

--
for i = 1 to n |  -- noisy elevation angle, radians

theta0[i] = 70 * PI/180 + a * (ran()+ran()+ran()+ran())
xdot[i] = v0 * cos(theta0[i])    |   ydot[i] = v0 * sin(theta0[i])
xImpact[i] = 0  | -- reset difference-equation state variable!
next

--                 | make a vectorized simulation run and read its
drunr          | n sample values into the combined sample
--
for i = 1 to n   |   xI[i + (k - 1) * n] = xImpact[i]   |   next
next

--
DOT xSum = xI * 1   |  xAvg = xSum/M
DOT xxSum = xI * xI  |  xxAvg = xxSum/M

s=sqrt(abs(xxAvg - xAvg^2))
write “xAvg = “;xAvg,” s = “;s   | -- the resulting statistics!

FIGURE 4-6. Commented experiment-protocol script for nn repetitions of the n-dimensional
vectorized Monte Carlo simulation in Section 4-11. Note that the n difference-equation state
variables xImpact[i] must be reset to 0 for repeated runs.
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To compute statistics, we declare an M-dimensional combined-sample
vector for each random variable of interest, say

M = n * nn       |       ARRAY xI[M]

for the variable xImpact. After each vectorized run, the resulting n sample
values xImpact[1], xImpact[2], …, xImpact[n] are fed to the combined-
sample vector xI with a small one-line loop

for i = 1 to n   |  xI[i + (k - 1) * n] = xImpact[i]     |      next

The M-dimensional combined-sample array xI will then produce Monte
Carlo statistics such as averages and probability-density estimates exactly as
in Sections 4-8 to 4-10.
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5
Random-process Simulation 
and Monte Carlo Studies with
Noisy Signals

COMPUTER MODELS OF NOISE PROCESSES

5-1. Noise in DYNAMIC Program Segments

Chapter 4 described how experiment-protocol scripts use the library function
ran() to produce random parameters and random initial conditions. More
general random-process models also need random functions of the time in
DYNAMIC program segments. Modeling continuous noise on digital com-
puters raises problems because (1) pseudorandom noise is inherently discon-
tinuous, and (2) models of wideband noise need very large numbers of
pseudorandom-noise samples. We will first study sampled-data processes
and then go on to continuous-noise models.

5-2. Sampled-data Random Processes

(a) A Platform for Sampled-data Experiments
DYNAMIC program segments without differential equations (no d/dt or
Vectr d/dt statements) implement only sampled-data assignments, including
difference-equation systems (Section 2-1). Unless the experiment-protocol
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script says otherwise,1 t = t0 defaults to t = 1, and TMAX defaults to NN – 1,
so that COMINT = 1. Now, t simply counts time steps as it takes the succes-
sive values t = 1, 2, …, NN.

DYNAMIC program segments can freely employ ran() in sampled-data
assignments such as

p = alpha * ran() + q

This calls ran() at each sampling time and generates a noisy sequence p(1),
p(2), …, say as an input to a difference-equation system (Section 2-1). ran()
works equally well in vector or matrix assignments (Chapter 3), say

Vector v = A * cos(w * t) + B * ran()

Vector and matrix assignments effectively call ran() repeatedly to generate
successive noisy array components.

This is a readymade system for studying discrete-step random processes. It
is, in particular, a useful platform for neural-network simulation (Chapter 6).
Difference-equation systems with pseudorandom inputs can model a wide
variety of discrete-step random processes, including Markov processes. This
large subject must be left for another book, but we will exhibit a familiar
example. 

(b) A Sampled-data Random Process Model: Coin Tossing
The coin-tossing function

x = sgn(ran() – a) (0 ≤ a ≤ 1) (5-1)

models coin tosses at successive sampling points if x = 1 is interpreted as
heads and x = –1 as tails. The probability of coming up heads is P = (1 – a)/2,
so that a = 1 – 2P.

(c) Recursive Sampled-data Addition and Time Averaging
The DESIRE program

NN = 10 | drun
-------------------------
DYNAMIC
-------------------------
x = f(t) | xsum = xsum + x
type x, xsum

1 The experiment protocol can set t = t0 = 0 if preferred.



computes successive sums xsum(t) = x(1) + x(2) + ... + x(t) for t = 1, 2, … in
the manner of Section 2-2. As noted there, DESIRE automatically recognizes
xsum = xsum + x as a difference equation and assigns the default initial
value x(0) = 0, so that we correctly implement the recursion

xsum(t) = xsum(t – 1) + x(t) (t = 1, 2, … )

even though t never actually takes the value t = 0.
The sampled-data time average

xavg = xsum(t)/t = [x(1) + x(2) + ... + x(t)]/t (t = 1, 2, ...)

can also be computed with a recursive sampled-data assignment

xavg = xavg + (x – xavg)/t (5-2)

DESIRE again recognizes this as a difference equation (Section 2-2) and
automatically assigns the default initial value xavg(0) = 0, so that we cor-
rectly implement

xavg(t) = xavg(t – 1) + [x(t) – xavg(t – 1)]/t (t = 1, 2, ... )

For t = 1, xavg(t – 1) = xavg(0) = 0, so that xavg(1) = x(1), as it ought to be.
One can similarly compute sample averages favg of any function f(x) of x by
programming

favg = favg + (f(x) – favg)/t (5-3)

Note also that DESIRE programs can use recursive averaging to process real
data, say, from files, as easily as computer-generated data [1].

5-3. Modeling Continuous Noise

(a) Deriving “Continuous”Noise from Periodic Pseudorandom Samples
Correct modeling of noisy time functions is more difficult than noisy-param-
eter generation. Normally, the pseudorandom noise function ran() cannot be
used directly in differential-equation systems, because

• ran() necessarily changes in discrete steps and would compromise
numerical integration (Section 2-3).

• Noise must be derived from periodic samples to produce predictable
noise power spectra.

Therefore, in properly written DYNAMIC program segments that include dif-
ferential equations, ran() normally appears only in sampled-data assignments
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following an OUT or SAMPLE m statement (Sections 1-8 and 2-3). This
ensures periodic sampling at the sampling rate

SR = (NN – 1)/TMAX or SR = (NN – 1)/(m * TMAX) (5-4)

SR is determined by the values of NN, TMAX, and m set by the experiment
protocol (Section 1-6).2

Numerical integration updates differential-equation system variables in small
steps to model continuous or “analog” functions of the time t (Sections 1-6 and
1-7). Noisy sampled-data variables fed to a differential-equation system are
sample/hold state variables (Section 2-3)3 and thus discontinuous step functions
of the time t. Such variables are read at every derivative call, but they change
only at sampling times, so that numerical integration will be correct. As we
noted in Section 2-3, sample-hold state variables require initialization at t = t0.

To model continuous noise Noise = Noise(t), we feed a noisy sampled-
data state variable y to a differential equation system representing a low-pass
or band-pass filter, as in

d/dt Noise = – w * Noise + y | -- one-stage low-pass noise filter
. . . . . . . . . . . . . . . .
OUT
y = a * (ran()+ran()+ran()+ran()) + b | -- y is roughly Gaussian

The noise frequency spectrum is determined by the noise-sampling rate (5-4)
and the filter transfer function [2].

Many kinds of random processes can be derived from such simulated
“analog” noise, for example,

q = A * sin(w * t) + c * p (sinusoid with additive noise)
q = A * p * sin(w * t) (random-amplitude sinusoid)
q = A * sin(w * t + p) (random-phase sinusoid)

Note that multiple independent noise generators require separate calls of
ran(). To get partially correlated noise samples y, z, one can use assignments
such as

y = ran() z = ran() + b * y with E{y * z} = b/3
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2 This should be noted if TMAX is to be changed, for noise spectra will change unless NN is
changed as well. If noise sampling faster than the input/output sampling rate is required, set
MM > 1 (Section 1-6).
3 Just as in Figure 2-2, one cannot observe the sample-hold action on a display unless the vari-
able is created following a SAMPLE m statement with m > 1.



(b) “Continuous”Time Averages
To produce the time average

xavg = (1/t) �1

0
xdt (5-5)

we program the DYNAMIC segment line

d/dt xxx = x | xavg = xxx/t with xxx(0) = 0 (default value) (5-6a)

or

d/dt xavg = (x – xavg)/t with xavg(0) = x(0) (5-6b)

Instead of using the default value t = t0 = 0, we set t = t0 = 1.0e–275 to elim-
inate the singularity (see also Section 5-2c).

5-4. Problems with Simulated Noise 

Simulation programs assume that different calls on a pseudorandom-noise
generator such as ran() produce statistically independent samples of simulated
random parameters and noise functions [3–8]. But this is really not true.
Pseudorandom-noise samples, although usually guaranteed to be uncorre-
lated, are generated by a deterministic program. Model outputs can depend on
higher-order joint probability distributions of many random-noise samples
[6], and it is conceivable that hidden periodicities or correlations might pro-
duce strange unforeseen effects. In Chapter 4, our Monte Carlo studies
involved only random parameters and/or random initial values; that requires
relatively few noise samples and is usually safe. But simulations involving
wideband time-variable noise may require enormous numbers of independent
noise samples [9]. One thousand simulation runs with, say, 5 noise sources
might need 5–500 million independent samples.4 References [3] and [5] list a
number of tests for the quality of pseudorandom noise, but we usually assume
statistical independence and then compare results obtained with different
pseudorandom-noise generators. Section 5-10 describes a simple method that
completely rescrambles an existing noise sequence for such tests.

MONTE CARLO SIMULATION WITH NOISY SIGNALS

5-5. Gambling Returns

The vectorized Monte Carlo program in Figure 5-1 takes statistics on a sam-
ple of n gambling sprees. Each gambling spree consists of t = N successive
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4 ran(), which is based on the GNU library routine drand48, repeats after 248 – 1 samples and
normally produces good results. If desired, it would not be difficult to implement ran() with a
pseudorandom-noise generator having a longer repetition period [3, 4]
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scale = 0.1 XSUMAVG,xavgAvg,xavgVar vs. t

NN = 1000    |    scale = 0.1
display N16  |  display C17   |  display R
--                 P = (1 - a)/2  or a  =  1 - 2 * P 
P = 0.4857   |  --        (as in U.S. roulette)
a = 1-2*P
--------------------------------------------------------
n = 1000
ARRAY x[n], xsum[n], xavg[n]
for i = 1 to n  |  x[i] = sgn(ran() - a)  | next | -- initialize
drun
---------------------------------------------------------
DYNAMIC
---------------------------------------------------------
Vector x = sgn(ran() - a)
Vectr delta xsum = x   |   Vectr delta xavg = (x - xavg)/t
--
---------------------------------------------------------        statistics
DOT temp = xsum * 1  |   xsumAvg = temp/n
DOT temp = xsum * xsum   |   xssAvg = temp/n
xsumVar = xssAvg - xsumAvg^2

DOT temp = xavg * 1   |   xavgAvg = temp/n
DOT temp = xavg * xavg   |   xaaAvg = temp/n

xavgVar = xaaAvg - xavgAvg^2

FIGURE 5-1. This vectorized Monte Carlo study computes runtime histories of statistics taken
over n = 1000 gambling sprees as the number t of bets increases from 1 to NN = 1000 bets.
Vector difference equations produce the current total-return vector xsum = xsum(t) and the cur-
rent average-return vector xavg = xavg(t) by recursive substitutions much as in Section 5-2c.



coin tosses or roulette bets on black/red,

x = sgn(ran() – a) (0 ≤ a ≤ 1) (5-7)

as in Section 5-2b. We used the theoretical US roulette success probability
P = 34/(34 + 36) ≈ 0.4857, so that a = 1 – 2P ≈ 0.02857 (P would be 35/(35
+ 36) ≈ 0.4923 in Monte Carlo, Monaco).

For any one gambling spree, the total return xsum(t) and the average
return xavg(t) after t = 1, 2, … bets are sampled-data variables. Their values
would be accumulated by recursive substitutions (difference equations)

xsum = xsum + x xavg = xavg + (x – xavg)/t

starting with zero initial values, as in Section 5-2b. For a sample of n gam-
bling sprees, the experiment protocol in Figure 5-1 declares the total-return
vector xsum and the average-return vector xavg, whose respective compo-
nents xsum[i] and xavg[i] represent the total and average returns of the ith
gambling spree after t bets. The initial values of xsum [i] and xavg[i] (for
t = 0, as in Section 5-2) all default to 0.

The DYNAMIC program segment in Figure 5-1 accumulates the vector
sample functions xsum = xsum(t) and xavg = xavg(t) after successive bets
with the vector difference equations

Vectr delta xsum = x | Vectr delta xavg = (x – xavg)/t

(see also Section 3-4). Fast compiled DOT operations then generate the sam-
ple averages xsumAvg(t), xavgAvg(t) and the sample variances xsumVar(t),
xavgVar(t) for t = 1, 2, …, NN, just as in Section 4-8b. The runtime display in
Figure 5-1 shows these statistics as functions of t. We can also display or print
their final values after t = NN bets.

Statistics computed from the simulated random process fluctuate less and
less as the sample size n increases (see also the footnote to Section 4-4). For
t = NN = 1000, typical simulation runs with n = 1000 and n = 10,000 produced

xsumAvg = – 29.86 and – 28.76 xavgAvg = – 0.02986 and – 0.0288
xsumVar = 1073.7 and 1008.8 xavgVar = 0.0010737 and 0.0010088

For comparison, probability theory predicts the theoretical values

E{xsum} = – NN a = – 28.57 E{xavg} = – a ≈ – 0.02857
Var{xsum} = NN (1 – a2) = 999.184 Var{xavg) = (1 – a2)/NN = 0.000999184
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5-6. A Continuous Random Walk

As a first example of a differential-equation system with dynamic noise
input, we generate a continuous random walk in the x direction by simple
integration of a noise input from t = t0 = 0 to t = TMAX [10]. A single random
walk would be modeled with the simple DYNAMIC program segment 

DYNAMIC
----------------------
d/dt x = noise
OUT
noise = a * ran()

For t = t0 = 0, all sample values x[i] default to 0. Unfiltered, uniformly dis-
tributed noise a * ran() is obtained from the pseudorandom-noise generator
ran(); the positive parameter a represents the noise amplitude. Since the inte-
grator input noise is constant over each sampling interval, it makes sense to
select the simple Euler integration (irule 2) with DT = TMAX/NN and t0 = 0.
The “continuous” variable x actually changes in small steps a DT ran(). We set
DT = TMAX/NN to make DT a little smaller than COMINT = TMAX/(NN – 1)
(Section 1-8).

Random-walk statistics can be related to probability theory. Each random-
walk increment a DT ran() is uniformly distributed between –a DT and a DT,
with expected value 0 and variance (a DT)2/3. Different pseudorandom-noise
samples are uncorrelated. By the time t, Euler integration has added t/DT = t
NN/TMAX uncorrelated increments whose variances simply add, so that

E{x(t)} = 0 Var{x(t)} = (t/DT) (a DT)2/3 = Var(t) (5-8a)

E{x(TMAX)} = 0 Var{x(TMAX)} = NN (a DT)2/3 = VAR0 (5-8b)

It is convenient to choose a = sqrt(3 NN), so that scale = VAR0 = TMAX2. As
the number t/DT of random steps increases, the theoretical probability density
of x(TMAX) becomes approximately Gaussian with mean and variance (5-8b).

Vectorized Monte Carlo simulation estimates E{x(t)} and Var{x(t)} by the
corresponding sample average xAvg = xAvg(t) and sample variance xVar =
xVar(t) obtained from n replicated random-walk models

DYNAMIC
----------------------------------
Vectr d/dt x = noise
OUT
Vector noise = a * ran()

112 Random-process Simulation and Monte Carlo Studies with Noisy Signals



Monte Carlo Simulation with Noisy Signals 113

A single simulation run produces the n time histories x(t) and also computes
time histories of the statistics xAvg = xAvg(t) and xVar = xVar(t) with

DOT xSum = x * 1  |  DOT xxSum = x * x
xAvg = xSum/n | xxAvg = xxSum/n | xVar = xxAvg – xAvg^2 (5-9)

Figure 5-2a exhibits several random walks, and Figure 5-2b shows scaled
time histories of xAvg, and xVar(t). Note how xVar(t) approximates the
theoretical value Var = t * DT * (a^2)/3.

An extra DYNAMIC program segment (Section 4-10c) computes a proba-
bility density estimate of x(TMAX) as in Section 4-10c and compares it to the
theoretical Gaussian probability density (Fig. 5-2c). Figure 5-3 shows the
complete random-walk program.

For a typical run with NN = 10,000 steps and n = 5000, we measured
xAvg = 0.008 and xVar = 1.025, which approximates the theoretical results
(27). Monte Carlo results were unchanged with rescrambled pseudorandom
noise obtained by changing the value of n from 5000 to 5002 (Section 5-10).
On a 2.4-GHz personal computer running Linux, vectorized simulation of
5000 replicated 10,000-step random walks took 4.6 s, and 7.3 s with runtime
computation and display of xAvg(t) and xVar(t). Five thousand repeated
10,000-step random walks (without runtime statistics computation) took 8.4
s. The post-run probability density estimation required 2.4 s in either case. 

5-7. The 1776 Cannonball with Air Turbulence

Referring to Figure 4-2, we can add a random wind force W(t) to our can-
nonball simulation in Section 4-6 by changing the DYNAMIC program seg-
ment in Figure 4-3 as follows:

DYNAMIC
---------------------------------------------------------------------------------------------
v = sqrt(xdot^2 + ydot^2)
d/dt W = - r * W + noise  | -- a simple low-pass filter
d/dt x = xdot  |  d/dt y = ydot
d/dt xdot = - R * v * xdot + W  | -- W is the horizontal wind force
d/dt ydot = - R * v * ydot-g
--
step
xI = xI + swtch(y) * (x - xI)  | -- hold the impact abscissa
OUT
noise = b * (ran()+ran()+ran()+ran()) | -- roughly Gaussian noise
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FIGURE 5-2. (a) 4 of n = 5000 random walks, (b) time-histories of the statistics xAvg and
xVar, and (c) post-run probability-density estimate for x(TMAX). Figure 5-2b compares the
time history of the sample variance xVar with the theoretical variance Var = t DT a2/3. Figure
5-2c compares the computed probability density estimate with the Gaussian probability den-
sity. The original displays were in color.
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-- VECTORIZED MONTE CARLO STUDY OF A RANDOM WALK 
----------------------------------------------------------------------------------------------------------------
irule 2 | -- Euler integration
NN = 10001 | TMAX = 1
DT = TMAX/NN | -- < COMINT  =  TMAX/(NN- 1)
a = sqrt(3 * NN) | -- --- scaled noise amplitude
VAR0 = TMAX^2 | scale = VAR0
--
n = 5000  |  STATE x[n]  |  ARRAY noise[n]
for i = 1 to n  |  noise[i] = a * ran()  |  next  | -- initialize
drun
write "type go to continue" |  STOP
----------------------------------------------------------------------------------------------------------------
-- post-run probability-density estimation 
ARRAY f[n]
irule 0 | -- just sampled data
scale = 4  |  TMAX = scale | NN = 2500
a = 2 * scale  |  b= - scale | -- for display sweep
t = 0   |   h = 0.15 | -- h is the Parzen-window width
alpha = 1/(2 * h * h)   |  beta = 1/(h * n * sqrt(2 * PI))
drun PARZEN
----------------------------------------------------------------------------------------------------------------
DYNAMIC
----------------------------------------------------------------------------------------------------------------
Vectr d/dt x = noise
OUT
Vector noise = a * ran()
------------------------------------ compute statistics
DOT xSum = x * 1   |   DOT xxSum = x * x
xAvg = xSum/n  |   xxAvg = xxSum/n | xVar = xxAvg - xAvg^2
Var = t * DT * (a^2)/3 | -- theoretical variance of x
--
xAvgx20 = 20 * xAvg | -- scaled display
dispt xVar, Var, xAvgx20
----------------------------------------------------------------------------------------------------------------
label PARZEN
--
xx = a * t + b   |  -- display sweep for Parzen Window
Vector f = beta * exp(- alpha * (xx - x)^2)
DOT F = f * 1   |   F = 10 * F - scale
-- - display Gaussian density for comparison
yy = 10*exp(- (xx^2)/(2 * VAR0))/sqrt(2 * VAR0 * PI) - scale
errorx2 = 2*(F - yy) + 0.5*scale  | -- deviation from normal density
dispxy xx, yy, F, errorx2 | -- scaled and offset display

FIGURE 5-3. DESIRE program for the vectorized random-walk simulation and runtime sta-
tistics computations. An extra DYNAMIC program segment estimates the post-run probability
density and compares it with the Gaussian probability density.



The sample-hold state variable noise and the extra differential-equation state
variable W can be safely initialized with zero values.  The vectorized model
in Figure 4-4 can be similarly amended.

SIMULATION OF NOISY CONTROL SYSTEMS

5-8. Monte Carlo Simulation of a Nonlinear Servomechanism:
A Noise-input Test

We use noise-function inputs unoise(t) to a simulated control system to
study two different problems:

1. How well does the control system follow a deliberately applied random
input?

2. How do unwanted noise inputs affect control-system performance?

The following example deals with the first question: we shall employ noise as
a test input.

To generate a “continuous” noise test input unoise(t) for a simulated con-
trol system, we feed roughly Gaussian sample-hold pseudorandom noise
noise = a * (ran()+ran()+ran()+ran()) to a low-pass filter as in Section 5-3a.
For a change, let us program a two-section filter:

d/dt p = – w * p + noise    |  -- two-section low-pass filter
d/dt unoise = – w * unoise + p |  -- unoise() is the desired test input 
. . . . . . . . . . . . . . . . . . . . . . . .
OUT  |  -- get noise samples at sampling points
noise = a * (ran()+ran()+ran()+ran()) | -- this is roughly Gaussian noise

We apply the noise test input unoise = unoise(t) to the nonlinear servo
model of Section 1-14, that is,

e = x – unoise | -- servo error
voltage = – k * e – r * xdot | -- motor voltage
d/dt v = – B * v + voltage | -- motor-field buildup
torque = maxtrq * tanh(g2 * v/maxtrq) | -- saturation-limited motor torque
--
d/dt x = xdot | Vectr d/dt xdot = torque – R * xdot | -- dynamics

The Monte Carlo simulation program in Figure 5-4 replicates this model n
times by declaring state vectors p, unoise, v, x, xdot and vectors noise, e,
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and torque with

STATE p[n], unoise[n], v[n], x[n], xdot[n]
ARRAY  noise[n], e[n], torque[n]

The scalar parameters w, k, r, B, g2, maxtorq, R, and a are the same for all
n models. The initial values of p, unoise, v, x, and xdot all default to 0. The
n sample-hold state variables noise[i] are initialized with an experiment-
control-script loop

for  i = 1 to n   |   noise[i] = a * (ran()+ran+ran()+ran()) | next

Figure 5-4b displays the resulting time histories of

• The servo input unoise[17] together with the corresponding the servo
output x[17] and servo error e[17] for one of the n models.

• The sample average eAvg = eAvg(t) of the error. 
• The sample average eeAvg = eeAvg(t) of the squared error.

After an initial transient, the sample mean square error eeAvg exhibits rela-
tively small fluctuations about a fixed expected value. eeAvg is a useful sta-
tistical control-system performance measure. One can investigate effects of
different servo-parameter combinations and also modify the input-noise
amplitude and bandwidth by changing a and w.
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FIGURE 5-4a. This Monte Carlo display shows time histories of 1000 model sample aver-
ages eAvg and eeAvg together with the test-noise input unoise[17] and the corresponding ser-
vomechanism output x[17] and error e[17] for one of the replicated models.
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-- VECTORIZED MONTE CARLO STUDY OF A NOISE-INPUT TEST
-- note noise sampling and initialization
----------------------------------------------------------------------------------------------------
a = 4    |    w = 1
k = 40 | r = 2 | g1 = 10000 | -- controller parameters
B = 300 | maxtrq = 1 | g2 = 2 | R = 0.6 | -- servo parameters
----------------------------------------------------------------------------------------------------
TMAX = 10 | DT = 0.001 | NN = 5000   |    scale = 1
display N1 | display C8 | display R | -- display colors
--------
n = 1000
STATE p[n], unoise[n], x[n], xdot[n], v[n]
ARRAY noise[n], voltage[n], torque[n], e[n]
-- initialize noise
for i = 1 to n  |  noise[i] = a * (ran()+ran()+ran()+ran()) | next
--
drun
write "eAvg = ";eAvg;"     eeAvg = ";eeAvg
----------------------------------------------------------------------------------------------------
DYNAMIC
----------------------------------------------------------------------------------------------------
Vectr d/dt p = - w * p + noise   |  -- two-section
Vectr d/dt unoise = - w * unoise + p | -- low-pass filter
--
Vector e = x - unoise | -- servo error
Vector voltage = - k * e - r * xdot | -- motor voltage
Vectr d/dt v = - B * v +  g1 * voltage | -- motor-field buildup 
--
Vector torque = maxtrq * tanh(g2 * v/maxtrq) | -- dynamics
Vectr d/dt x = xdot   |   Vectr d/dt xdot = torque-R * xdot
------------------------------------------------------------------
-- sample at sampling points
OUT
Vector noise = a * (ran()+ran()+ran() +ran()) | -- sampled noise
--
DOT eSum = e * 1   |  DOT eeSum = e * e | -- compute averages
eAvg = eSum/n   |   eeAvg = eeSum/n
----------------------------------------------------------------------------------------------------
-- offset curves for a rescaled stripchart display
--
X = x[17] + 0.5 * scale |  Unoise = unoise[17] + 0.5 * scale
error5 = 5 * e[17]
eAvg100 = 100 * eAvg - 0.5 * scale  
eeAvg500 = 500 * eeAvg - scale
dispt X, Unoise, error5, eAvg100, eeAvg500

FIGURE 5-4b. Vectorized Monte Carlo simulation program for the servomechanism noise-
input test.



5-9. Monte Carlo Study of Control-system Errors 
Caused by Noise

In the second type of control system problem, our servomechanism tries to
follow a given input u = u(t) such as u = A * cos(omega * t) while “continu-
ous” noise unoise(t) is added to the motor voltage voltage(t). We must now
follow u(t) as closely as possible and minimize the effect of noise on the con-
trol-system output x.

The required simulation program is nearly identical with that in Figure 5-4b.
We simply replace the servo input unoise(t) in Figure 5-4b with

u = A * cos(omega * t)

and try to reduce the sample average of the control-system error

e = x – u

in some sense (Section 5-11). Figure 5-5a lists the program for the vectorized
Monte Carlo study. Note that the servo input u(t) and the signal parameters A
and omega are common to all n replicated models and are thus represented
by scalars. Figure 5-5b shows time histories of u(t), and unoise[17], x[17],
and e[17] for one of the models together with the time histories of the sample
averages eAvg and eeAvg.

ADDITIONAL TOPICS

5-10. Monte Carlo Optimization

Many Monte Carlo studies are parameter-influence studies (Section 4-3) that
attempt to optimize system performance measures defined as sample averages
or other statistics. In a control-system study, this could be the sample average
of the error at t = TMAX, or the sample average of a time integral such as the
integral squared error (ISE, Sections 1-14 and 4-3e). Sample averages of time
averages computed as in Section 5-2c deserve special mention, because they
often have small variances and may thus require smaller Monte Carlo samples.

Vectorization is a convenient and efficient method for computing Monte
Carlo sample averages for optimization studies. Unfortunately, though, that
is only half the task. Serious parameter optimization typically requires a sep-
arate optimization program [15]. Such programs are not trivial and must call
the Monte Carlo simulation a number of times—possibly many times.
Currently, most such combinations of simulation and optimization are ad hoc
solutions of special cases.

Additional Topics 119



120 Random-process Simulation and Monte Carlo Studies with Noisy Signals

-- VECTORIZED MONTE SIMULATION OF A NOISY SERVO
-- note noise sampling and initialization
----------------------------------------------------------------------------------------------------
A = 0.1 | omega = 1.2 | -- input-signal parameters
a = 4000 | w = 100 | -- noise parameters
k = 40 | r = 2  |  g1 = 10000 | -- controller parameters
B = 100 | maxtrq=1 | g2=2 | R=0.6  |  -- servo parameters
----------------------------------------------------------------------------------------------------
TMAX = 7.5 | DT = 0.001 | NN = 3750 | scale = 1
display N1 | display C8 | display R | -- display colors
--------
n = 1000
STATE p[n], unoise[n], x[n], xdot[n], v[n]
ARRAY noise[n], voltage[n], torque[n], e[n]
-- initialize noise
for i = 1 to n  |  noise[i] = a * (ran()+ran()+ran()+ran())  |  next
--
drun
write "eAvg = ";eAvg;" eeAvg = ";eeAvg
----------------------------------------------------------------------------------------------------
DYNAMIC
----------------------------------------------------------------------------------------------------
Vectr d/dt p = - w * p + noise | -- two-section
Vectr d/dt unoise = - w * unoise + p | -- low-pass filter
--
u = A * cos(omega * t) | -- servo input for all n models
Vector e = x - u | -- servo error
Vector voltage = - k * e - r * xdot + unoise | -- noisy motor voltage
Vectr d/dt v = - B * v +  g1 * voltage | -- motor-field buildup
--
Vector torque = maxtrq * tanh(g2 * v/maxtrq) | -- dynamics
Vectr d/dt x = xdot   |   Vectr d/dt xdot = torque-R * xdot
------------------------------------------------------------------
-- sample at sampling points
OUT
Vector noise = a * (ran()+ran()+ran() +ran()) | -- sampled noise
--
DOT eSum = e * 1   |  DOT eeSum = e * e | -- compute averages
eAvg = eSum/n   |   eeAvg = eeSum/n
----------------------------------------------------------------------------------------------------
-- offset curves for a rescaled stripchart display
--
X = 5 * x[17] + 0.5 * scale 
U = 5 * u + 0.5 * scale | Unoise = 0.5 * unoise[17] + 0.5 * scale
error10 = 10 * e[17]
eAvg10 = 10 * eAvg - 0.5 * scale  
eeAvg100 = 100 * eeAvg - scale
dispt X, U, Unoise, error10, eAvg1000, eeAvg100

FIGURE 5-5a. The vectorized Monte Carlo simulation program for the noise-perturbed 
servomechanism is similar to Figure 5-4b, but note the different servo input and motor voltage.



5-11. A Convenient Heuristic Method for Testing 
Pseudorandom Noise

All checks of pseudorandom-noise quality in practical dynamic system sim-
ulations are heuristic. But our model-replication technique adds a new simple
test to the usual substitution of different noise generators. Since each repli-
cated model is fed its noise in turn, any change in the number n of replicated
models completely scrambles the noise sequence fed to each model.
Agreement of Monte Carlo results with different values of n, therefore, con-
stitutes a plausible heuristic test of the noise quality.

5-12. An Alternative to Monte Carlo Simulation

(a) Introduction
We showed that respectable Monte Carlo studies of dynamic systems fit on
very inexpensive personal computers. But this is a recent development. Monte
Carlo simulation of small dynamic systems dates back to the 1940s, but when
early guided-missile designers needed to predict mean square errors in noise-
perturbed control systems they lacked the computer power needed to simulate
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FIGURE 5-5b. Time histories produced by the vectorized Monte Carlo study of a nonlinear
servomechanism with a noisy controller. The controller damping coefficient r was deliberately
set too low to show the noise effects more clearly. The original display was in color.                  



noisy systems repeatedly. They resorted to deriving differential-equation sys-
tems whose solution approximated the mean square error directly.

(b) Dynamic Systems with Random Perturbations
We consider differential-equation systems of the form (1-1), say

(d/dt)x = f[t; x, u] (5-10)

where x = x(t) ≡ (x1, x2, ... ) is a set of state variables, and u = u(t) ≡ [u1(t),
u2(t), ... ] represents a set of random input functions and/or system parame-
ters. To simplify the discussion, assume that defined-variable assignments
have already been substituted into the state equations (5-10). We again want
to study effects of random inputs (noise, wind forces) or parameters (manu-
facturing tolerances) on the solution time histories x(t). As before, the initial
values x(0) are simply additional system parameters.

In many applications, each random input u is the sum u = u0 + δu of a
nominal input 

x(t) ≡ x0(t) + δx(t) (5-11)

where x0(t) is the nominal solution of the system for u = 0, that is, the solu-
tion of 

(d/dt)x0 = f [t; x0, 0] (5-12)

Subtraction of Eq. (5-12) from Eq. (5-10) yields new differential equations
for the perturbations δx = δx(t),

(d/dt)δx = f [t; x0(t) + δx, u(t) + δu] – f [t; x0(t), 0] (5-13)

(c) Mean Square Errors in Linearized Systems
Quite often the perturbations δu and δx are small, so that the perturbation vector
δx(t) need not be computed as accurately as x(t). One can then substitute an accu-
rate solution x0(t) of the unperturbed system into Eq.(5-13), which requires less
solution accuracy. Specifically, neglecting all but the linear terms in a Taylor-
series expansion of Eq. (5-13) produces the linearized perturbation equations

d/dtδx = (∂f/∂x)δx + (∂f/∂u)δu (5-14)

where the partial derivatives are known functions of the nominal solution
x0(t) and the time t but are independent of δx and δu.
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Control-system designers did not actually need the noisy solutions δx = δx(t)
of the perturbation equations (5-14). What they really wanted was a small
number of mean-square perturbations

XX ≡ E{δx2(t1)} (5-15)

at a specified time t = t1. Interestingly, it turns out that one can use Eq. (5-14)
to derive a new differential-equation system whose solution produces the
desired mean squares (5-15) directly; no random-noise input is needed
[2,11].

This ingenious approach (originated by Laning and Battin [11]) has been
almost forgotten. Straightforward Monte Carlo simulation is no longer
expensive, and formulation of the partial derivatives in Eq. (5-14) becomes
ugly in flight-simulation problems, where f involves multi-input tabulated
wind-tunnel data.
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6
Vector Models of Neural Networks

NEURAL-NETWORK SIMULATION

Neural-network simulation began as an attempt to reverse-engineer adaptive
biological systems, with neuron pulse rates represented as numerical variables.
Connection-parameter adjustments imitate biological learning. Hardware mod-
els using hundreds of small processors can implement artificial sense organs,
but most artificial neural networks (and all we will discuss here) are abstract
computer models, in effect large multi-input function generators that compute
statistics for regression, pattern recognition, and control systems1. This chapter
is not a treatise on neural-network theory or a roadmap for neural-network
development. Our goal here is to demonstrate the use of DESIRE vector oper-
ations for programming compact and efficient neural-network models.

6-1. Neural-network Models and Pattern Vectors 

Figure 6-1a represents a model neural-network layer with nx input activa-
tions x[1], x[2], …, x[nx] and nv output activations v[1], v[2], …, v[nv]. A
simple neuron-layer model implements 

v[i] = f ��
nx

k=1
W[i, k]x[k]� (i=1, 2, ..., n) (6-1)
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1 Mathematical biologists use more realistic neuron-layer models and now simulate actual
pulsing neurons with nonlinear differential equation systems (Sections 6-24 and 6-25).
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The coefficients W[i, k] are connection weights and f() is a neuron activation
function. The input and output activations are real-valued features (compo-
nents) of pattern vectors x ≡ (x[1], x[2], …, x[nx]) and v ≡ (v[1], v[2], …,
v[ny]). Typical pattern features are measurement values, image-point inten-
sities, or attributes of an employee, customer, or merchandise item. Pattern
vectors admit component-wise addition and multiplication by scalars.
Euclidean or taxicab norms ||x|| of pattern vectors are defined as in Section
3-7b.

Neural-network models combine various types of network layers to pro-
duce output patterns as functions y = y(x) of an input pattern. We must
adjust the connection weights so that the network matches given inputs x
with desired output patterns y. The neural network is trained for such a task
with a training sample of known pairs x, y (“supervised learning”). Each
training step computes y(x) and appropriately modifies connection weights
as functions of current and past y[i] values. After the weights are adjusted,
we test the neural network with test samples before using it in applications. 

DESIRE vector operations produce concise and efficient models for a
wide variety of neural networks. The examples in Sections 6-10, 6-12, and 6-22d
demonstrate neural-network training. General-purpose simulation-language
programs normally train only small neural networks, but our vector models
also work with appropriate connection weights precalculated with external
optimization programs [3–5].

6-2. Simple Vector Operations Model Neural-network Layers

If the experiment-protocol script declares an nx-dimensional input-pattern
vector x, an nv-dimensional output-pattern vector v, and an nv × nx connec-
tion-weight matrix W with (Section 3-1)

.....  ..... 

 x    W    v x W1  v    W2   y 

(a) (b)

FIGURE 6-1. (a) A neural-network layer, and (b) a two-layer network.

…… 



ARRAY x[nx], v[nv], W[nv, nx] (6-2)

the basic neural-network layer operation (6-1) is conveniently represented by
a DYNAMIC-segment vector assignment (Section 3-3a),

Vector v = f(W * x) (6-3)

In particular,

Vector v = W * x (6-4a)

represents a linear neural-network layer. The vector assignments

Vector v = SAT(W * x) Vector v = sigmoid(W * x) (6-4b)

Vector v = sat(W * x) Vector v = tanh(W * x) (6-4c)

model layers of neurons with different output-limiting activation functions
(“squashing functions”).2 The network layers (6-4b) generate nonnegative
outputs v[i] useful for modeling biological pulse rates. Equations (4-4a) and
(4-4c) produce more general mathematical models. One can also program
scalar assignments to specific individual neuron activations, say v[13].

To add bias inputs bias[1], bias[2], …, bias[ny] to the neural-network
layer (4-3), we declare an nv-dimensional bias vector bias and program3

Vector v = f(W * x + bias) (6-5)

6-3. Normalizing and Contrast-enhancing Neuron Layers

The normalizing and maximum-enhancing layers described in this section are
bare-bones abstractions of biologically plausible neuron layers (Section 6-18).
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2 sigmoid(x) ≡ 1/(1 + exp(–x)) is a DESIRE library function.
3 It is often convenient to represent bias inputs as connection weights in the (nx + 1)th column
of an augmented connection-weight matrix W1. If you declare bias-augmented arrays xx, WW
with (Section 3-11)

ARRAY x[nx] + x0[1] = xx, WW[nv,nx + 1]
x0[1] = 1

one can model the neural-network layer (6-5) with the simpler vector assignment

Vector v = f(WW * xx)

The vector expression WW * xx is equivalent to W * x + bias. Note that the true input x is still
available to the program, so that a vector expression can be assigned to x. Figures 6-4b and
6-11 show simple applications.



We obtain a normalized neuron-layer pattern v1 with

Vector v1 = abs(v) | DOT vnorm = v1 * 1
Vector v1 = v/vnorm (6-6)

(taxicab normalization, see also Section 3-7) or 

DOT vnormsq = v * v | vnorm = sqrt(vnormsq)
Vector v1 = v/vnorm (6-7)

(Euclidean normalization),4 so that the activations v1[i] or their squares
v12[i] add up to 1. Usually the un-normalized vector v is not needed, and v1
in Eq. (6-6) or (6-7) can simply be replaced with v. Normalized activations
are necessarily bounded. 

The output activations v[i] of a softmax neuron layer defined by

Vector v = exp(c * W * x) | -- (c > 1)
DOT vsum = v * 1 | Vector v = v/vsum (6-8)

are normalized and positive. Each v[i] is enhanced or reduced depending on
how large it is. This contrast enhancement becomes more pronounced as the
parameter c increases. If no two output activations are equal, the largest v[i]
approaches 1 as the parameter c increases, and all other v[i] go to 0. Such a
softmax layer is a useful continuous approximation of a normalized maxi-
mum-selecting layer defined for the case of all nonnegative v[i] by

Vector v^ = W * x | Vector v = swtch(v) (6-9a)

(see also Section 3-8b). Another contrast-enhancement technique is thresh-
olding, as in

Vector v = swtch(c * W * x – thresh) (c > 0) (6-9b)

where thresh is a positive threshold value.

6-4. Multilayer Networks

Assume that the experiment protocol has declared neuron-activation vectors
x, v, z, … and connection-weight matrices W1, W2, … with

ARRAY x[nx], v[nv], z[nz], …, W1[nv,nx], W2[nz,nv], … (6-10)
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4 To save divisions, which are usually slower than multiplications, one can program
DOT vnormsq = v * v   |   vnormo1 = 1/sqrt(vnormsq)   |   Vector v1 = v*vnormo1 



Then a DYNAMIC program segment can model a multilayer neural network
by simply combining network-layer assignments, as in 

Vector v = tanh(W1 * x)
Vector z = W2 * v
. . . . . . . . . . . . . . . . . (6-11)

The input pattern x feeds the v layer, the v layer feeds the z layer, and so on
(Fig. 6-1b).

6-5. Exercising a Neural-network Model

(a) Computing Successive Neuron Layer Outputs
Neuron-layer definitions such as Eqs. (6-4) to (6-9) are normally sampled-
data assignments that execute at the sampling times t0, t0 + COMINT, t0 + 2
COMINT, …, t0 + TMAX = t0 + (NN – 1)COMINT defined by the experiment
protocol (Section 1-6). If an input pattern x = x(t) is programmed with a vec-
tor assignment such as

Vector x = A * sin(omega * t) + a * ran() (6-12)

then subsequent network-layer assignments such as Eq. (6-11) will generate
the neuron-layer outputs v(t), z(t), … for successive sampling times t. One
can now display or list selected neuron activations, say, v[19], as functions of
the simulation time t.

t0 and TMAX default to 1 and NN – 1 if the DYNAMIC program segment
does not contain differential equations. If t0 andTMAX are not specified, then
t simply steps through t = 1, 2,…, t0 + TMAX = NN – 1.

(b) Using Pattern-row Matrices
Instead of introducing the input pattern as a function of t as in Eq. (6-12), one
can define nx-dimensional input patterns x as selected rows of an N × nx pat-
tern-row matrix5 P declared and filled in the experiment-protocol script
(Section 6-10a).

After a DYNAMIC program segment specifies the value of the system
variable iRow > 0, vector assignments such as

Vector x = P# Vector x = (q – alpha) * cos(P#) + c (6-13)
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5 Pattern-row matrices simplify computer programs because almost all computer languages
store matrices row-by-row in memory. Pattern vectors, though, are usually represented as col-
umn vectors, and most textbooks [15,16] define a pattern matrix as the nx × N matrix XT whose
columns are our N nx-dimensional pattern vectors. 



automatically substitute the vector in the (iRow mod N)th row of P for P#.
DESIRE returns an error message if iRow < 1.

In particular, the DYNAMIC-segment assignment

iRow = t

makes iRow = trunc(t), so that the pattern selection cycles through succes-
sive rows of P for t = 1, 2, …. This allows one to exercise the neural-network
model by repeating N patterns defined by P over and over. Other useful pat-
tern sequences are obtained with

iRow = t/m (go to next row after m steps)
iRow = k * abs(ran()) (pseudorandom “scrambling” of successive

patterns)

DYNAMIC program segments can assign new values to iRow as often as
needed to produce different pattern sequences. Multiple pattern-row matrices
with the same or different dimensions, and with the same or different iRow
assignments can be used. 

P# can be used as a vector in a vector expression as in Eq. (6-11), but must
not be index-shifted or used in vector-matrix products.

(c) Pattern Input from Files
For successive presentation of a large number N of pattern vectors, one can
concatenate the vectors in a file and read successive sets of N1 vectors into an
N1 × nx pattern-row matrix P. Then, continued simulation runs present N/N1
successive sets of N1 patterns to the neural network:

connect “datafile” as input #3 | -- open the file
for k = 1 to N/N1

read #3, P | -- read N1 pattern vectors into the 
pattern-row matrix P

drun | -- make continued simulation runs with
the N1 patterns

next | -- get more patterns
disconnect 3 | -- close the file

REGRESSION AND PATTERN CLASSIFICATION

Neural-network models are often applied to two common statistics problems,
regression and pattern classification.
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6-6. Mean-square Regression

For a sample of corresponding pairs of nx-dimensional patterns x and ny-
dimensional patterns Y, mean-square regression of y on x produces ny-
dimensional output patterns y = y(x) that minimize the sample average

g = ||y(x) – Y||2 ≡�
ny

k=1

(y[k] – Y[k])2 (6-14)

Regression creates a multi-input/multi-output function generator whose
output patterns y(x) match the given samples Y(x) in the least-squares
sense.

6-7. Pattern Classification

Consider a sample of input patterns x each associated with an prototype
pattern taken from a set of N <– nx known patterns s = s(1), s(2), …, s(N). x is
usually simply a noise-perturbed version of s. A pattern classifier produces
output patterns y = y(x) that in some sense identify the prototype pattern s
associated with each given input x. One way to implement this is to do a
mean-square regression of s on x. But we do not really need to compute an
nx-dimensional regression function approximating the “best-fitting” proto-
type pattern s(i)—all we really want is its index i.

An especially useful computer representation or code for the N index val-
ues i = 1, 2, …, N is the corresponding set of N N-dimensional binary selec-
tor patterns

S(1) ≡ (1, 0, 0, …), S(2) ≡ (0, 1, 0, …) , …, S(N) ≡ (0, 0, …, 1) (6-15)

For our sample of paired input patterns x and corresponding prototypes s, we
will use a classifier network with N-dimensional output patterns y(x) that
match not s, but S, in the least-squares sense. In other words, the y(x) are to
minimize the sample average of

g=||y(x) – S||2 ≡�
ny

k=1

(y[k]–S[k])2 with ny = N (6-16)

One can show that network output activations y[i] that minimize the
expected value of g (the “theoretical risk”) equal the a posteriori probabilities
Prob (s = s(i) | x) [6,7]. The actual network outputs y[i] are statistical esti-
mates of these a posteriori probabilities.
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NEURAL-NETWORK TRAINING: PATTERN CLASSIFICATION
AND ASSOCIATIVE MEMORY

6-8. Linear Pattern Classifiers

An nx-dimensional linear neural-network layer

Vector y = W * x (6-17)

can classify N <– nx prototype vectors s(i) if they are linearly independent, that
is, if a1s(1) + a2s(2) + ··· + aN

s(N) = 0 implies a1 = a2 = ··· = aN = 0. This is true in
many applications, for example, for almost all image-pattern prototypes.6

The desired optimal connection-weight matrix W can be computed explic-
itly if each classifier input x is simply one of N linearly independent proto-
type patterns s(i) with additive zero-mean noise. W is then the Penrose
pseudoinverse of the nx × N pattern matrix XT whose N columns are the given
nx-dimensional prototype vectors.7 But the successive-approximation tech-
nique described below is simpler, and it is not restricted to additive noise. 

6-9. The LMS Algorithm

We start with random connection weights W[i, k] and feed our one-layer net-
work (6-17) successive noise-perturbed prototype patterns, say x = s + a *
ran(). To reduce the error measure (6-16) at each step, Widrow’s LMS algo-
rithm (least-mean-squares algorithm) or delta rule [8,9] repeatedly moves each
connection weight W[i, k] in the negative-derivative direction by assigning

W[i, k] = W[i, k] – �
1
2� lrate ∂g/∂W[i, k] (i = 1, 2, ..., N; k = 1, 2, ..., nx) (6-18)

where

g =�
N

i=1
��

nx

j=1

W[i, j]x(r)[ j] – S[i]� (6-19)

�
11
2� �

∂W
∂
[
g
i, k]
� = �

nx

j=1

(W[i, j ]x(r)[r] – S[i ]x(k))

(i = 1, 2, …, N; k = 1,2, … , nx) (6-20)
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6 Often, prototype vectors can be made linearly independent by adding the same constant
vector to every prototype, or by using more pattern components (e.g., by adjoining an extra
constant component to every pattern x).
7 Pseudoinverses, and the Greville and Gram–Schmidt algorithms used to compute them, are
treated in References [33, 34].



The LMS algorithm (6-18) simplifies computations by using derivatives of g
itself instead of derivatives of its sample average. In effect, the LMS algo-
rithm approximates each derivative of the sample average by accumulating
many small steps. 

The choice of the optimization gain lrate is a trial-and-error compromise
between computing speed and stable convergence. Successive values of lrate
must decrease to avoid overshooting the optimal connection weights. More
specifically, if the sum of all successive squares lrate2 has a finite limit, then
the LMS algorithm converges with probability 1 to at least a local minimum
of the expected value E{g} (the theoretical risk, as in Section 6-7), assuming
that such a minimum exists [8,9]. The algorithm should then approximately
minimize measured sample averages of g (the empirical risk). In any case,
results must be checked with multiple samples.

DESIRE’s computer-readable vector/matrix language represents the N × nx
matrix (6-20) neatly as the outer product (W * x – S) * x of the N-dimensional
vector W * x – S and the nx-dimensional vector x (Section 3-10). We start the
connection weights W[i, k] with random values and implement the LMS
algorithm (6-18) with the matrix difference equation

MATRIX W = W – lrate * (W * x – S) * x 

or, more simply,

DELTA W = lrate * (S – W * x) (6-21)

6-10. A Softmax Image Classifier

(a) Problem Statement and Experiment-protocol Script
The program in Figure 6-2 models an effective classifier network for 5 × 5-
pixel image patterns representing the N = 26 letters of the alphabet. Each let-
ter image is an instance of the vector input, whose nx = 5 × 5 = 25
components are pixel-intensity values. We simply used the values –1 for
blank pixels and +1 for black or colored pixels. Each actual network input x
is such a letter pattern perturbed by additive noise, that is,

x[i] = input[i] + Tnoise * ran() (i = 1, 2, …, nx)

The experiment protocol declares a pattern-row matrix INPUT (Section 6-5b)
with N = 26 rows of nx = 25 pixel values, one row for each letter of the
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alphabet. A single data/read assignment fills this matrix with successive
pixel values arranged in 26 groups of 5 5-pixel lines:

-- A
data 1,1,1,1,1
data 1,-1,-1,-1,1
data 1,1,1,1,1
data 1,-1,-1,-1,1
data 1,-1,-1,-1,1
-- B
data 1,1,1,1,1
data 1,-1,-1,-1,1
data 1,1,1,1,-1
data 1,-1,-1,-1,1
data 1,1,1,1,1
--
. . . . . . . . . . . . . . . . . etc. for C, D, …
read INPUT

The corresponding 26 binary selector patterns S = (1, 0, 0, …), (0, 1, 0, …), …
similarly form the rows of an N × N row-pattern matrix TARGET. This is sim-
ply the N × N unit matrix defined by the DESIRE script line TARGET = 1. A
double experiment-protocol script loop

for i = 1 to N | for k = 1 to nx+1 | W[i, k] = ran() | next | next

starts the unknown connection weights with random values.

(b) Network Model and Training
Instead of a simple linear network layer, we use a softmax layer (Section 6-3),
whose contrast-enhanced output activations are especially suitable for match-
ing binary-selector patterns. Referring to Sections 6-3 and 6-5b, the
DYNAMIC program segment in Figure 6-2 represents the complete neural
network with 

DYNAMIC
------------------------------------------------------------------------------------------
iRow = t | Vector x = INPUT# + Tnoise * ran() | -- read one row
Vector v = exp(c * W * x) | DOT vsum = v * 1 | -- softmax
Vector v = v/vsum 

When the network is trained, the normalized softmax output activations v[i]
estimate the a posteriori probabilities of the 26 alphabet-letter patterns
(Section 6-10c).
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-- SOFTMAX PATTERN CLASSIFIER
-- estimates a posteriori probabilities …
-- … and implements associative memory
------------------------------------------------------------------
nx = 25 | N = 26
ARRAY input[nx], x[nx]
ARRAY INPUT[N, nx],TARGET[N, N], W[N, nx]
ARRAY v[N], q[N], y[nx], error[N],Yerror[nx]
--
for i = 1 to N | for k = 1 to nx | -- initialize W
W[i,k] = ran() | next | next
--
---------------------------- input-pattern rows
-- A
data 1,1,1,1,1
data 1,-1,-1,-1,1
data 1,1,1,1,1
data 1,-1,-1,-1,1
data 1,-1,-1,-1,1
-- B
data 1,1,1,1,1
data 1,-1,-1,-1,1
data 1,1,1,1,-1
data 1,-1,-1,-1,1
data 1,1,1,1,1
. . . . . . . . . . . . . . . . . etc. for C, D, …
read INPUT
MATRIX TARGET = 1 | -- binary-classifier rows
lrate = 0.05 | Tnoise = 0.5 | Rnoise = 0.9 | c = 0.1
NN=20000
--------------------------------------------------------
drun
write 'type go for successive recall runs' | STOP
----------
display F | -- clear the display
t = 1 | NN = 2 | restore | -- reset the read pointer
label recall
for I = 1 to N
read input | drun RECALL
write v | -- show all 26 probabilities
write 'type go for successive recall runs' | STOP
next
restore | go to recall

FIGURE 6-2a. This experiment-protocol script for the pattern classifier trains the network
with NN = 20,000 noise-perturbed patterns and then calls a second DYNAMIC program seg-
ment for successive tests with each pattern. Each test estimates the a posteriori probabilities
and displays the actual patterns input, x, yy, and y (Fig. 6-2b). Try this program with different
noise levels Tnoise, Rnoise.



With iRow = t = 1, 2, …, our neural network is repeatedly fed all N succes-
sive pattern rows, for a total of NN training steps. We define error = S – W * x
rather than W * x – S as the pattern-matching-error vector, because this saves
programming a possibly large number of leading minus signs. We then
implement the LMS algorithm with

Vector error = TARGET# - v    
DELTA W = lrate * error * x
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------------------------------------------------------------------
DYNAMIC
------------------------------------------------------------------
iRow = t | Vector x = INPUT# + Tnoise * ran()
Vector v = exp(c * W * x) | DOT vsum = v * 1 
Vector v = v/vsum | -- probability estimate
------------------------------------------------
Vector error = TARGET# - v
DELTA W = lrate * error * x | -- LMS algorithm
DOT enormsq = error * error
--
dispt enormsq
------------------------------------------------
label RECALL
--
Vector x = input + Rnoise * ran()
Vector v = exp(c * W * x) | DOT vsum = v * 1
Vector v = v/vsum | -- probability estimate
Vector q^ = v | Vector q = swtch(q) | -- binary selector
Vector yy = INPUT% * v
Vector y = INPUT% * q | -- associative memory
--
----------------------------------------------------------- pattern outputs
Vector input = cc * input | Vector x = cc * x 
Vector yy = cc * yy | Vector y = cc * y
SHOW | SHOW input, 5 | SHOW x, 5 | SHOW yy, 5 |
SHOW y, 5

FIGURE 6-2b. DYNAMIC program segments for training and testing the pattern classifier.
The test segment computes the a posteriori probabilities p for the current pattern input and
also produces associative-memory outputs yy and y. Statements such as SHOW x, 5 display a
pattern as 5 rows of 5 pixels. cc is a color value.



As training proceeds, the program also computes and displays the squared
pattern-matching error g = enormsq as a function of the trial number t
(Fig. 6-3), with

DOT enormsq = error * error | dispt enormsq

(c) Test Runs and A Posteriori Probabilities
To test the classifier, our experiment protocol restores the data/read pointer
and uses data/read assignments to feed one pattern at a time directly to the
neural-network input vector input. No pattern matrix is needed. A second
DYNAMIC program segment labeled RECALL then runs the neural network
once (NN = 2) to compute and list the 26 a posteriori probability estimates
p[i] for the first alphabet-letter pattern (Fig. 6-3). Test runs are repeated for
the other letter patterns.
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FIGURE 6-3. Referring to the softmax pattern-classifier program in Figure 6-2, the bottom
of the display shows superimposed time histories of the squared binary-selector-matching
error enormsq for all 26 noisy alphabet-letter patterns. The top of the display shows the actual
prototype pattern input, the noise-corrupted pattern x, and the clean associative-memory out-
put y for the letter “A”.



6-11. Associative Memory

The RECALL program segment in Figure 6-2b also computes and displays
the nx-dimensional pattern yy defined by

Vector yy = INPUT% * p (6-22)

Since p approximates a binary-selector pattern, yy approximates the prototype
pattern associated with the noise-perturbed input x (associative memory). Our
RECALL segment also implements a normalized maximum-selecting layer
(Section 6-3)

Vector q^ = v | Vector q = swtch(q) (6-23)

q is necessarily an exact binary-selector pattern, so that the associative-mem-
ory output

Vector y = INPUT% * q (6-24)

reproduces a prototype pattern exactly. Strong noise would cause the selec-
tion of a wrong prototype, but the system is an effective nonlinear noise fil-
ter. Figure 6-3 shows actual patterns input, x, yy, and y obtained with
moderate noise in the training and recall runs.

NONLINEAR MULTILAYER NETWORKS

6-12. Backpropagation Networks

(a) The Backpropagation Algorithm
We now turn to nonlinear multilayer networks, say a two-layer network8

defined by

Vector v1 = tanh(W1 * x)
Vector y = tanh(W2 * v1) (6-25)

The v1 layer is a hidden layer. For mean-square regression (Section 6-6),9

we are given a training sample of paired of nx-dimensional patterns x and
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8 Three layers if the input buffer is counted as an extra layer, as many textbooks do. 
9 Backpropagation networks can also serve as pattern classifiers with a softmax output layer in
the manner of Section 6-10 (Example ex6-1.lst in the book CD).



ny-dimensional “target” patterns Y. We want to generate ny-dimensional out-
put patterns y = y(x) that minimize the sample average of

g = ||y(x) –Y||2 ≡�
ny

k=1

(y[k] – Y[k])2 (6-26)

Pattern classification can be programmed as mean-square regression on
binary selector patterns, with a softmax output layer as in Section 6-10
(example bpsoft7.lst in the book CD). 

To minimize the mean-square regression error, we update the connection
weights W1[i, k] and W2[i, k] with a generalized version of the LMS algo-
rithm (6-18), the generalized delta rule

W1[i, k] = W1[i, k] – �
1
2� lrate1 ∂g/∂W1[i, k]

(i = 1, 2, ..., nv1; k = 1, 2, ..., nx) 

W2[i, k] = W2[i, k] – ��
1
2� lrate2 ∂g/∂W2[i, k]

(i = 1, 2, ..., ny; k = 1, 2, ..., nv1) (6-27)

This is a system of difference equations similar to those in Section 3-1; the
connection weights are difference-equation state variables. The right-hand
side of each difference equation (6-27) is a function of the current values of
the connection weights and defined variables (6-25).

We first compute these defined variables. The derivatives in Eq. (6-27) are
then evaluated by the chain rule. This rather lengthy derivation [7,8] is sim-
plified if we specify intermediate results in terms of three new defined-vari-
able vectors error, delta1, and delta2 declared with 

ARRAY error[ny], delta1[nv1], delta2[ny]

In the DYNAMIC program segment, we program

Vector error = Y – y 

Vector delta2 = error * (1 – y^2)

Vector delta1 = W2% * delta2 * (1 – v1^2) (6-28)

in that order (note that error is defined as in Section 6-10), and then update
the connection-weight matrices with

DELTA W1 = lrate1 * delta1 * x
DELTA W2 = lrate2 * delta2 * v1 (6-29)
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lrate1 and lrate2 are positive, suitably decreasing learning rates similar to
lrate in Section 6-9. Reference [7] suggests lrate1 = r * lrate2 with r between
2 and 5. Generalization to three or more layers is not difficult.10 Most
backpropagation networks have only two layers, and the output layer is often
simply a linear layer.11 Neuron layers can be given bias inputs in the manner
of Section 6-2. 

Note that A% denotes the transpose of a matrix A (Section 3-3), products
of two vectors represent matrices (Section 3-10), and the function 1 – Q2 is
the derivative of the neuron activation function Q = tanh(q).

Interestingly, one can consider the defined-variable assignments (6-28) as
the definition of a neural network that “backpropagates” output-error effects
to the connection weights in each layer of the original neural network.

(b) Discussion
With enough neurons in the first layer, even a two-layer network is theoreti-
cally a “universal approximator,” that is, an output activation y[i] can
approximate any desired continuous function of the inputs x[k] [7,8].
Typically, there is more than one optimal set of connection weights. If too
many hidden-layer neurons are used, one might match the training-sample
pairs accurately but make matches for new test samples worse (“overtrain-
ing” hurts “generalization”). This problem is treated in substantial detail in
References [11] and [32].

Unfortunately, backpropagation training is often slowed by flat spots and/or
stopped by local minima in the mean-square error function. A frequently use-
ful partial fix (momentum learning) declares two extra state-variable matrices
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10 The way to add more layers can be seen from the program for a three-layer network with two
hidden layers:

Vector v1 = tanh(W1 * x)
Vector v2 = tanh(W2 * v1)  
Vector y = tanh(W3 * v2)
Vector error = Y – y      
Vector delta3 = error * (1 – y^2)
Vector delta2 = W3% * delta3 * (1 – v2^2)
Vector delta1 = W2% * delta2 * (1 – v1^2)

DELTA W1 = lrate1 * delta1 * x   
DELTA W2 = lrate2 * delta2 * v1
DELTA W3 = lrate3 * delta3 * v2

Example bptest2.lst in the book CD shows the time histories of some hidden neurons in a
three-layer backpropagation network.
11 In this case, the activation-function derivative factor (1 – y^2) in Eq. (6-28) is omitted, since
all its vector components equal 1.



Dw1, Dw2 and replaces the two matrix difference equations (6-29) with four
difference equations

MATRIX Dw1 = lrate1 * delta1 * x + mom1 * Dw1
MATRIX Dw2 = lrate2 * delta2 * v1 + mom2 * Dw2
DELTA W1 = Dw1 | W2 = Dw2 (6-30)

which make the connection-weight adjustments favor the directions of past
successes. The optimization parameters mom1, mom2 must be found by trial
and error and are typically between 0.1 and 0.9. There are literally hundreds
of papers and several books [6–9,12–18] describing other improved back-
propagation algorithms, but none work every time. References [2–5] describe
more advanced numerical function-optimization schemes applicable to mul-
tilayer networks. In practice, the best algorithm for a specific application
must be selected (and possibly redesigned) by trial and error. The
Levenberg–Marquart algorithm [5,7] is often a good compromise.

(c) Examples and Neural-network Submodels
Backpropagation regression networks with a few inputs and one or more out-
puts are used to model empirical relations. As a simple example, the program
in Figure 6-4a trains a two-layer regression network to produce a very accu-
rate sine function; Figure 6-4b shows results. We have defined the two-layer
neural network as a reusable submodel (Section 3-17) in the experiment-
protocol script. The same submodel is then invoked in two separate
DYNAMIC program segments, one for training and one for recall tests. Our
submodel could also be stored and used in another program, say, in a control-
system simulation.

Figure 6-4c shows the squared-error time histories for 32 output activa-
tions of a two-layer, 32-input backpropagation network with nv = 9 hidden-
layer neurons during a successful training run of NN = 200,000 steps. A
2.4-GHz personal computer trained 585 connection and bias weights to pro-
duce this display in 7.3 s. The same run took 5.5 s with the display turned off.

6-13. Radial-basis-function Networks

(a) Basis-function Expansion and Linear Optimization
Given a sample of corresponding measurements x, Y, traditional statistical
regression methods have long approximated mean-square regression func-
tions y(x) (Section 6-6) with weighted sums y(x) = W1 f1(x) + W2 f2(x) + …+
Wn fn(x) of conveniently chosen basis functions f1(x), f2(x), …, fn(x). One
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-- A FUNCTION- LEARNING BACKPROPAGATION NETWORK
-----------------------------------------------------------------------------------------------
-- note that the submodel definition does not depend on nx, ny, nv
--
ARRAY x$[1], y$[1], v$[1], W1$[1, 1], W2$[1, 1]
SUBMODEL NET2(x$, y$, v$, W1$, W2$)

Vector v$ = tanh(W1$ * x$) 
Vector y$ = W2$ * v$
end

----------------------------------------------------------------------------------------------
nx = 1  |  ny = 1  |  nv = 5 |  -- nv is the number of hidden neurons
--
ARRAY x[nx] + x0[1] = xx  |  x0[1] = 1   |  -- introduce bias 
ARRAY v[nv], y[ny], target[ny], error[ny], delta2[nv]
ARRAY WW1[nv, nx +  1], W2[ny, nv], Dww1[nv, nx +  1], Dw2[ny, nv]
--
-- random initial weights 
for i = 1 to nv

WW1[i, 1] = 0.2 * ran() |  WW1[i, 2] = 0.2 * ran()  |  W2[1, i] = 0.2 * ran()
next

----------------------------------------------------------------------------------------------
-- set experiment parameters
lrate1 = 1   |   lrate2 = 0.3   |   mom1 = 0.1  |   mom2 = 0.1
scale = 0.5  |   NN = 10000
--
for i = 1 to 3  |  drun   |  next   |  -- training runs
lrate1 = 0.4  |  lrate2 = 0.15  |  -- decrease lrate
for i = 1 to 10  |  drun   |  next
--
write "type go for a recall run"  |  STOP
drun RECALL
------------------------------------------------------------------
DYNAMIC
------------------------------------------------------------------
x[1] = ran()  |  target[1] = 0.4 * sin(4 * x[1])
invoke NET2(xx, y, v, WW1, W2)
------------------------------------------------- training
Vector error = target - y
Vector delta2 = W2% * error * (1 - v^2)
MATRIX Dww1 = lrate1 * delta2 *xx + mom1 * Dww1
MATRIX Dw2 = lrate2 * error * v + mom2 * Dw2
DELTA WW1 = Dww1  |  DELTA W2 = Dw2
------------------------------------------------------------------
--

label RECALL
x[1] = ran()   |  target[1] = 0.4 * sin(4 * x[1])
invoke NET2(xx, y, v, WW1, W2)
Vector error = target - y

FIGURE 6-4a. Training program and recall test for a two-layer backpropagation network
learning the sine function by mean-square regression of a random input on the target function
0.4 * sin(4 * x[1]). The network (but in this case not the training program) is defined as a con-
venient submodel that can be stored and reused with different input, output, and hidden-layer
dimensions nx, ny, nv. xx,WW1, and Dww1 are bias-augmented arrays (Section 6-2).
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FIGURE 6-4b. Training display produced by the sinusoid-learning program of Figure 6-4a.
The network output y(t) and the target sinusoid target(t) match very accurately, well within the
display-curve width. The time history at the bottom represents one hundred times the absolute
value of the matching error error.
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FIGURE 6-4c. Squared-error training histories of 32 pattern-matching errors produced by a
larger backpropagation network with one hidden layer and nine hidden neurons. Such optimiza-
tions often converge even after temporary instabilities due to excessively large learning rates.



must then find n parameters W1, W2, …, Wn that minimize the sample aver-
age of g = [y(x) – Y]2. This procedure is readily extended to mean-square
regression of ny-dimensional pattern vectors y(x) on nx-dimensional pattern
inputs x (Section 6-6).

We shall approximate the desired output pattern y = Y(x) with a single neu-
ron layer that implements

y[i]=�
n

k=1

W[i, k]fk{x[1], x[2]), ..., x[nx]} (i=1, 2, ..., ny) (6-31)

with

Vector y = W * f (6-32)

where f is an n-dimensional vector of basis functions f[1], f[2], …, f[n]. Once
these basis functions are computed, we only need to optimize a simple linear
network layer. If a minimum exists, successive approximations of the optimal
connection weights W[i,k] are easily computed with the LMS algorithm of
Section 6-9, namely,

Vector error = Y – y | DELTA W = lrate * error * f

The matching error error is again defined as in Section 6-10.

(b) Radial Basis Functions
Radial-basis-function (RBF) networks employ n hyperspherically symmetrical
basis functions f[k] of the form

f[k] = f(||x – Xk||; a[k], b[k], …) (k = 1, 2, …, n)

where the n “radii” ||x – Xk|| are the pattern-space distances between the
input vector x and n specified radial-basis centers Xk in the nx-dimensional
pattern space. a[k], b[k], … are parameters that identify the kth basis function
f[k]. The Xk and a[k], b[k], … must be judiciously preselected. Truly optimal
choices may or may not exist.

The most commonly used radial basis functions are

f[k] = exp(–a[k]||x – Xk||2) ≡ exp(–a[k]rr[k]) (k = 1, 2, ..., n) (6-33)

which can be recognized as “Gaussian bumps” for nx = 1 and nx = 2. The
radial-basis-function layer is then represented by the simple vector assignment

Vector y = W * exp(–a * rr) (6-34)

where y is an ny-dimensional vector, a and rr are n-dimensional vectors, and
W is an ny×n connection-weight matrix.
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It remains to compute the vector rr of squared radii rr[k] = ||x – Xk||2.
Following D.P. Casasent [16] we write the n specified radial-basis-center vectors
Xk as the n rows of an n-by-nx pattern-row matrix (template matrix) P, that is,

(P[k,1], P[k,2], …, P[k,nx]) ≡ (Xk[1], Xk[2], . . ., Xk[nx])     (k = 1, 2, … , n)

(Section 6-5b). Then

rr [k]=�
nx

j=1

(x[ j ]–P[k, j ])2=��
nx

j=1

x2[ j ]–2��
nx

j=1

P[k, j]x[ j ]+��
nx

j=1

P2[kj ] (k = 1, 2,…, n)

The last term, namely,

�
nx

j=1

P2[kj] = pp[k] (k = 1, 2, ..., n)

defines an n-dimensional vector pp that depends only on the given radial
basis centers. The DESIRE experiment-protocol script declares and precom-
putes this constant vector with

ARRAY pp[n]
for k = 1 to n 

pp[k] = 0
for j = 1 to nx | pp[k] = pp[k] + P[k,j]^2 |  next 
next

The DYNAMIC program segment can then generate the desired vector rr
with

DOT xx = x * x | Vector rr = xx – 2 * P * x + pp (6-35)

But normally, there is no need to compute rr explicitly. From Eq. (6-34), the
complete radial-basis-function algorithm is efficiently represented by 

DOT xx = x * x | Vector f = exp(a * ( 2 * P * x – xx – pp))
Vector y = W * f 
Vector error = Y – y
DELTA W = lrate * error * f (6-36)

If desired, one can adjoin a constant bias term to the f layer as in Footnote 3.  
This combination of Casasent’s algorithm and DESIRE vector assignments

makes it easy to program RBF networks when we know the number and loca-
tion of the radial basis centers Xk and the Gaussian-spread parameters a[k].
But their selection is a real problem, especially when the pattern dimension nx
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exceeds 2. Tessellation centers produced by competitive vector quantization
(Sections 6-15 and 6-16) are often used as radial-basis centers [7,8]. Appendix
A shows a complete program.

COMPETITIVE-LAYER PATTERN CLASSIFICATION

6-14. Template-pattern Matching

The classifier networks in Sections 6-7 and 6-10 learned by comparing input
patterns with N known prototype patterns (supervised learning). A competi-
tive pattern classifier learns to associate nx-dimensional input patterns 
x ≡ (x[1], x[2], ..., x[nx]) with one of n initially unknown patterns (template
patterns)

W (i ) ≡ (W [i, 1], W[i, 2], …, W [i, nx]) (i = 1, 2, …, n � nx) (6-37)

so that the sample average of the squared template-matching error

g=�
nx

j=1

(x[ j ] – W[i, j ])2 (i = 1, 2,..., n) (6-38)

is as small as possible.12 Such least-squares template matching (k-means
clustering) partitions the nx-dimensional pattern space into n Voronoi tessel-
lations (vector quantization). These regions are bounded by hyperplane seg-
ments. The statistical relative frequencies of x falling into any one
tessellation all tend to be approximately equal to 1/n.

Template-matching classifiers produce n-dimensional binary-selector pat-
terns (Section 6-7) corresponding to the n template rows. To train a competi-
tive-layer classifier, we feed it successive input patterns x and adjust W so as
to minimize the mean-square template-matching error. The classifier output
is then made equal to the binary-selector pattern that identifies the best-
matching template. This training process may or may not succeed (Sections
6-16 to 6-18).
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6-15. Unsupervised Pattern Classifiers

(a) Simple Competitive Learning
The competitive-classifier layer in Figure 6-5a reads nx-dimensional input
patterns x and computes an n × nx template matrix W and an n-dimensional
binary-selector output v. The experiment-protocol script declares

ARRAY x[nx], W[N, nx], v[n]

and starts the W[i, k] with random values (Section 6-10). We supply succes-
sive input patterns x as in Section 6-5. Then every execution of the
DYNAMIC-segment statement

CLEARN v = W(x) lrate, crit

with crit = –1 finds the template-matrix row (W[I,1], W[I,2], …, W{I,nx]) with
the currently smallest squared template-matching error [Eq. (6-38)] and
updates this template pattern with

W[I, k] = W[I, k] + lrate * (x[k] – W[I, k])     (k = 1, 2, … ) (6-39)

(Kohonen–Grossberg learning [15, 22, 24]). The learning rate lrate is a posi-
tive optimization parameter normally programmed to decrease with succes-
sive steps, as in Section 6-9.

The binary-selector output v in Figure 6-5 identifies the template vector
(6-39) closest to the current input x. To produce this vector for display
(Figure 6-6) or further computations, we program
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FIGURE 6-5a. A competitive template-matching layer and an optional counterpropagation
layer.



Vector w = W% * v (6-40)

Ideally, the n templates converge to centers of n different Voronoi tessella-
tions. This can identify up to N noise-perturbed but well separated prototype
patterns contained in an input sample (Fig. 6-6a). More often than not, though,
a template “following” a prototype pattern x in accordance with Eq. (6-39)
gets close to a subsequent input pattern and follows it instead. A prototype
may then “capture” more than one template vector or none at all, or a template
may end up somewhere between prototypes (Section 6-16).13 Sections 6-15b
and 6-17 describe two schemes for improved competitive learning.

(b) Learning with Conscience
Conscience algorithms [7,8,19,21] bias the template-learning competition so
that too-frequently selected templates are given a lower priority. DESIRE can
implement the FSCL (frequency-sensitive competitive learning) algorithm of
Ahalt et al. [19]. We declare an n-dimensional vector h ≡ (h[1], h[2], …, h[n])
immediately following v with

ARRAY …, v[N], h[n], … 
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13 In effect, the process has converged to a local minimum of the mean-square template-match-
ing error rather than to its global minimum.

------------------------------------------------------------------------------------------
DYNAMIC
------------------------------------------------------------------------------------------
iRow = t   |   -- select row in pattern matrix INPUT
-- lrate1 = lrate * exp(-SS * t)   |  -- decrease learn rate (optional)
Vector x = INPUT# + noise * (ran()+ran()+ran())  |  -- noisy input
CLEARN y = W(x)lrate1,crit   |  -- compete,learn
Vectr delta h = y   |  -- conscience, if any
--
Vector w = W% * y  |  -- reconstruct and display the templates

FIGURE 6-5b. DYNAMIC program segment for a competitive classifier trained with
repeated prototype-pattern rows from a pattern-row matrix INPUT. Set crit = –1 for simple
competitive learning, and crit = 0 for FSCL learning (see text). lrate = 0 for recall runs. The
last line (Vector w = W% * y) produces the currently learned template vector w corresponding
to the input x. If these templates successfully approximate the prototype vectors, the classifier
functions as an associative memory. To program the counterpropagation layer in Figure 6-5a,
we add the lines

Vector y = U * v | -- function output

Vector error = target - y | -- output error

DELTA U = lratef * error * v | -- learn function values



and program

Vector h = h + v or Vectr delta h = v (6-41)

in a DYNAMIC program segment. Each h[i] then starts at 0 and counts the
number of times the ith template was selected in the course of training. Then 

CLEARN v = W(x) lrate, crit

with crit = 0 finds and updates the template row (W[I, 1],W[I, 2], …,W{I, nx])
with the smallest product of the count h[i] and the current squared template-
matching error [Eq. (6-38)]. This tends to equalize the template-matching
counts and improves competitive learning. The results are still not always
perfect, as shown in the following section.

6-16. Experiments with Pattern Classification and 
Vector Quantization

The program in Figure 6-5 permits a wide range of experiments. 

(a) Pattern Classification
Figure 6-6a illustrates classification of noise-perturbed two-dimensional pro-
totype pattern vectors represented as points s ≡ (s[1], s[2]). The experiment
protocol generates N simple two-dimensional prototype patterns (N uni-
formly spaced points in a square) and stores them as rows of the N × 2 pat-
tern-row matrix INPUT (Section 6-5b). A DYNAMIC program segment adds
approximately Gaussian noise to produce the classifier input x with

Vector x = INPUT# + noise * (ran() + ran() + ran()) (6-42)

We set iRow = t to present the N prototypes in sequence (a random sequence
yields similar results). Alternatively, iRow = t/m presents each pattern m
times to let the classifier learn each pattern in turn. The DYNAMIC-segment
statement

CLEARN v = W(x) lrate, crit

with crit set to 0, –1, or a positive value allows trying different types of clas-
sifiers (Sections 6-16 and 6-17). One can also vary N, n, lrate, and the noise
level noise.

Clearly, classifying N prototype patterns requires at least n templates. But
training with a repeated or random sequence of different prototypes is likely
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to fail unless n is larger (possibly substantially larger) than N. In that case,
two or more different binary-selector outputs correctly identify the same pro-
totype.

(b) Vector Quantization
When the prototype-pattern input (6-42) is replaced in the competitive-layer
program of Figure 6-5b with a pure noise input, say,

x = ran()

the template updating (6-39) tends to move the n computed template vec-
tors w to the centers of n Voronoi tessellations in the nx-dimensional
input-pattern space (Fig. 6-6b). The binary selector output v identifies the
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FIGURE 6-6a. Competitive learning of two-dimensional patterns. Referring to Figure 6-5b,
the display shows N = 64 noisy pattern inputs x ≡ (x[1], x[2]) and some computed template vec-
tors w ≡ (w[1], w[2]) trying to approximate the 64 prototype patterns. With simple competitive
learning, some templates may end up between input-pattern clusters, and some clusters may
attract more than one template vector.



tessellation region that matches x best. For crit = 0 (FSCL learning,
Section 6-15b), h[i]/t estimates the statistical relative frequency of finding
x in the ith tessellation in t trials; all h[i] ought to approach t/n as t
increases. Actual experiments confirm these theoretical predictions only
approximately.

6-17. Simplified Adaptive-resonance Emulation

The Carpenter–Grossberg adaptive resonance theory (ART) [22–26] deals with
the multiple-capture problem by updating an already-committed template only
if it matches the current input within a preset vigilance limit (“resonance”).
Otherwise, a reset operation eliminates the template from the competition,
which then selects the next-best template, possibly a new pseudorandom tem-
plate. ART preserves already-learned pattern categories.
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FIGURE 6-6b. Here, N = 15 template vectors w are trying to learn Voronoi-tessellation cen-
ters for a pure-noise input x = ran() uniformly distributed over a square. Results are not perfect
even with conscience-assisted learning (crit = 0). The Appendix shows an application.



The DYNAMIC-segment operation14

CLEARN v = W(x) lrate, crit (6-43)

with crit > 0 implements ART functionality for the common special case of in-
turn pattern learning with low noise [28]. The program is outlined in the
Appendix. This classifier will not let successive prototypes “steal” committed
templates and learns n = N noise-free prototype patterns flawlessly one after
another (iRow = t/m). The algorithm also tolerates a small amount of additive
noise (Fig. 6-7b); with too much noise, the process runs out of templates and
returns an error message. As in classical ART [24], a fast-learn mode for
noise-free patterns simply sets W(I) = x instead of gradual updating when you
replace crit in statement (6-43) with crit #.
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FIGURE 6-7a. Competitive template matching of N = 64 noisy patterns x ≡ (x[1], x[2]) with
the pseudo-adaptive resonance scheme of Section 6-17 (crit = 0.015). Note that pattern clus-
ters do not “steal” each other’s templates. Repeated presentation of the 64 noise-corrupted pro-
totype patterns in turn (iRow = t/m with m = 200) produced flawless template matching, but
only with low noise levels. The original display was in color.

14 Note that the DESIRE CLEARN operation is different from the CLEARN operation used
with the early version of DESIRE described in Reference [17]. (See also Section A-3.)



6-18. Biologically Plausible Competition: Correlation Matching

The abstract CLEARN routines in Sections 6-16a, b, and 6-18 (see also the
DESIRE Manual in the book CD) simplify programming, but we may want
to see how biologically more plausible neural networks might model pattern-
matching competition. Specifically, such models ought to relate pattern
matching and contrast enhancement to connection weights that represent
physical synapses. Newer biological models use pulsed-neuron replication
(Sections 6-24 and 6-25) [29,31].

For Euclidean-normalized patterns x (Section 6-3), minimizing the sample
average of the squared template-matching error (6-38) is equivalent to corre-
lation matching, which maximizes the sample average of

g1=�
nx

j=1

W[i, j]x[ j ] (6-44)
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FIGURE 6-7b. The same experiment with larger initial random template-vector values.
We had to increase the number n of available templates from 64 to 70 to match all N = 64
patterns.



A contrast-enhancing neural-network layer (Section 6-3) represented by

Vector v^ = W * x | Vector v = swtch(v)

not only computes the correlation function (6-44) but also generates binary-
selector patterns v that identify the best-matching template-row, that is, the
template with the largest correlation function. What is more, the template-
vector components to be adjusted now appear as synapse-modeling neuron
connection weights. 

The template-updating operations (6-39) can be written as a matrix differ-
ence equation (Section 3-10), and the entire correlation-matching operation
is represented by15

DOT xnormsq = x * x | xnn = 1/sqrt(xnormsq) | Vector x = xnn * x 
Vector v^ = W * x | Vector v = swtch(v)
Vector w = W% * v | -- reconstruct templates
e = x - w -- template-matching error
DELTA W = lrate * v * e | -- update

Note that we implemented the normalization and contrast-enhancing layers
with simple assignments, as in Section 6-3. Biologically even more plausible
models learn these features gradually as training proceeds, using special non-
linear neurons for normalization and lateral feedback between adjacent neu-
rons for contrast enhancement [15, 17, 20, 22]. Such programs can be made
to work, but they are complicated especially when more than a few neural-
network layers are needed. Abstract operations such as CLEARN v = W(x)
lrate, crit are easier to program.

SUPERVISED COMPETITIVE LEARNING

Competitive-layer classifiers also work with supervised training for pattern
classification, regression, and associative memory. Such neural networks
may converge more easily than backpropagation networks.

6-19. Supervised Competitive Classifiers:The LVQ Algorithm

Kohonen’s LVQ (learning vector quantization) algorithm [8,15] modifies
the competitive-classifier updating rule (6-39) for supervised competitive learn-
ing. Each training-sample input x is presented together with its known associ-
ated binary-selector pattern S, as in Section 6-10. If the competitive-layer
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15 Example nquant.lst in the book CD shows a complete program that also computes
statistical relative frequencies for each template pattern. 



selector output v does not match S, the sign of the learning rate lrate in Eq.
(6-39) is reversed.

6-20. Counterpropagation Networks

Hecht-Nielsen’s counterpropagation network (Fig. 6-5; [21]) feeds the
binary-selector output v of a competitive-layer classifier to an “outstar” layer
programmed with

Vector y = U * v 

U may be known from a separate computation, or it can be LMS-trained to
associate a desired output vector y = target with each pattern input x. U can
be trained during or after the competitive learning process. 

Counterpropagation networks usually approximate regression more
quickly than backpropagation networks. But the resulting approximation y is
not continuous: y can take only n different values, where n is the chosen
number of template vectors. These values will be spaced most closely in
regions corresponding to frequent inputs (Fig. 6-8). Radial-basis-function
networks (Section 6-13b) with competitive basis-center learning are, in
effect, counterpropagation networks with built-in interpolation. Reference
[17] shows some examples.

NEURAL NETWORKS WITH MEMORY

6-21. Neural Networks and Memory

With all connection-weight values set, the neural networks programmed in
Sections 6-1 to 6-20 are static function generators. A time series x = x(t) of
input patterns produces corresponding output patterns y = y(t) without mem-
ory of past inputs or outputs. Neural-network training or adaptation to chang-
ing patterns, though, implies memory, as the network output feeds back to the
connection weights. Such adaptation is normally slow relative to input-signal
changes (low values of lrate for stable learning, Section 6-9), and this type of
neural-network memory is referred to as long-term memory.

Short-term memory converts some neuron activations into state variables
related to past values of inputs or other neuron activations. Such neural
networks are not static function generators; they are dynamic systems (filters).
Their connection weights can learn to recognize pattern sequences, or learn to
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FIGURE 6-8. Counterpropagation learning of a sine-wave input. Note that the output is a
step function.



match the outputs of a dynamic (state-equation) model fed a given sample of
input signals (model matching, a generalization of regression).

Short-term memory takes different forms, which can also be combined:

• tapped delay lines (shift registers) feeding neuron layers or individual
neurons

• neurons modeled by difference-equation systems or differential-equa-
tion systems

• feedback to preceding neuron layers (recurrent neural networks)

Much of this large subject is still in the research stage [7,14,36]. As before,
we present no exhaustive treatment but point out examples where our com-
pact vector models can be helpful.

6-22. Networks with a Delay-line Input Layer

(a) Vector Model of a Tapped Delay Line
In Figure 6-9, a static neural network reads the activations x[1], x[2], …, x[nx]
of a tapped-delay-line layer fed with a scalar function s(t) of the trial number t.
To implement the nx-stage delay line, we declare an nx-dimensional vector x
in the experiment protocol and program the DYNAMIC-segment assignments

Vector x = x{–1} | x[1] = s(t) (6-45)

The order of these two assignments is significant. The current value of the
input signal s(t) is read after the index-shift operation (Section 3-6) has
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FIGURE 6-9. A delay-line layer feeding a static neural network. Either a simple tapped delay
line or a gamma delay line can be used.



shifted earlier samples of s(t) into successive delay-line neurons,16 so that
(Fig. 6-10)

x[1] = s(t), x[2] = s(t – COMINT), x[3] = s(t – 2 COMINT), …

As noted in Section 6-5, COMINT = TMAX/(NN – 1) automatically defaults to
1 and t = 1, 2, … if t0 and TMAX are not specified.

(b) Simple Linear Filters
In Figure 6-9, the neural network connected to the delay line is a static neu-
ral network and can be trained as in the preceding sections. The simplest such
network just computes a weighted sum 

y(t) = w1 x[1] + w2 x[2] + … + wn x[n]
≡ w1 s(t – COMINT) + w2 s(t – 2 COMINT) + … 
+ wn s(t – nx COMINT) (6-46a)

with

DOT y = w * x (6-46b)
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FIGURE 6-10. This small program illustrates the operation of a tapped delay line by listing
x[1], x[2], … at successive sampling times t = 1, 2, …. Note that each new value of the input is
read after the line shifts.

NN=5
ARRAY x[4]
drun
------------------------------------------
DYNAMIC
------------------------------------------
Vector x = x{-1} | x[1] = t
type x[1], x[2], x[3], x[4]

t x[1] x[2] x[3] x[4]

1.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
2.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00 0.00000e+00
3.00000e+00 3.00000e+00 2.00000e+00 1.00000e+00 0.00000e+00
4.00000e+00 4.00000e+00 3.00000e+00 2.00000e+00 1.00000e+00
5.00000e+00 5.00000e+00 4.00000e+00 3.00000e+00 2.00000e+00

16 Note that shifting in the opposite direction would require an auxiliary vector to avoid illegal
recursion (Section 3-6) [17].



This creates a linear finite-impulse response (FIR) digital filter defined by the
connection-weight vector w ≡ (w1, w2, …). The design of such filters is dis-
cussed in References [7] and [30]. Widrow’s LMS algorithm (Section 6-9)
was, in fact, first developed to optimize such filters [7].

(c) Linear Matched Filters, Signal Classifiers, and Model Matching
More generally, we can program an ny-dimensional linear neuron layer

Vector y = W * x (6-47)

to implement ny linear filters such as matching filters for ny different input
signals s(t) [7] . We can also use the softmax-classifier layer described in
Section 6-10 to classify temporal signal patterns shifted into our tapped delay
line [7]. Last, but not least, note that the single DESIRE program line

Vector x = x{–1} | x[1] = s(t) | Vector y = W * x 

combines a tapped delay line and a linear neuron layer into a general linear-
system model; the connection weights W[i, k] can even be given functions of
the time t. Such models can be used to approximate the input/output behav-
ior of real systems such as process plants [7]. 

(d) A Nonlinear Predictor Trained with Backpropagation
Linear filters have long been used for prediction, but a nonlinear neural net-
work can do better [7]. The program of Figure 6-11 feeds the delay-line acti-
vations x[k] to the hidden layer of a simple two-layer network (Section 6-12)

Vector vv = tanh(WW1 * xx)  

Vector y = WW * vv

xx and vv are bias-augmented vectors declared with

ARRAY x[nx] + x0[1] = xx | x0[1] = 1 | -- delay line

ARRAY v[nv] + v0[1] = vv | v0[1] = 1 | -- hidden layer

as shown in Footnote 3.
The output vector y is one-dimensional, and S(t) = y[1] is the predictor

output signal. Assuming that the statistical properties of our signals do not
change with time, the program in Figure 6-11 generates training samples of
the “future” signal sTRUE(t) and delays sTRUE by the prediction time
m COMINT = m with another delay line

Vector signal = signal{-1} | signal[1]=sTRUE
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-- NONLINEAR  ADAPTIVE PREDICTOR
-- predicts Mackay-Glass chaos generator
--------------------------------------------------------------------
display N1 | display C8 | scale = 3
irule 1 | -- Euler integration for McKay-Glass
TMAX = 500 | DT = 0.04 | NN = TMAX/DT
a = 0.2 | b = 0.1 | c = 10 | -- for Mackay-Glass
tau = 25
--
ARRAY DD[1000] | -- time-delay buffer
sTRUE = 10 | - initialize time-delay buffer
for i = 1 to 1000 | DD[i] = sTRUE | next
--------------------------------------------------------------------
m = 20 | -- predictor delay
nx = 50 | -- number of predictor neurons
nv = 13 | -- number of hidden-layer neurons
--
ARRAY signal[m], y[1], error[1]
ARRAY x[nx] + x0[1] = xx | x0[1] = 1 | -- delay line
ARRAY v[nv] + v0[1] = vv | v0[1] = 1 | -- hidden layer
ARRAY vdelta[nv] + v0delta[1] = vvdelta | v0delta[1] = 1
ARRAY WW1[nv+1, nx+1], WW2[1, nv+1]
--
for i = 1 to nv+1 | for k = 1 to nx+1 | -- initialize

WW1[i, k] = 0.1 * ran()
next | next

---------------------------------------------------------
WW1gain = 0.06 | WW2gain = 0.006
--
N = 20
for i = 1 to N | drun | next | -- N training runs
write 'type go for prediction tests' | STOP
WW1gain = 0 | WW2gain = 0 | drun   | drun | -- test runs
----------------------------------------------------------------------------
DYNAMIC
------------------------------------------------------------------------------------
tdelay Sd = DD, sTRUE, tau | -- McKay-Glass time series
sTRUEdot = a * Sd/(1 + Sd^c) - b * sTRUE
d/dt sTRUE = sTRUEdot
------------------------------------------------------------------------------------
-- delay "future" signal sTRUE, shift resulting signal into x
--
-- OUT is not needed with Euler integration

FIGURE 6-11. Complete program for the nonlinear predictor.



to produce the current predictor input s(t) = signal[m]. The simulated pre-
dictor then tries to predict sTRUE(t) by minimizing the sample average of 
g = (y – sTRUE)2 with the backpropagation algorithm of Section 6-12a.
Prediction results necessarily depend on the frequency content of the input
signal.

To provide a fairly difficult prediction task, sTRUE = sTRUE(t) is the
Mackay–Glass “chaotic” time series [17] defined by17

Sd(t) = sTRUE(t – tau)

(d/dt) sTRUE = a Sd/(1 + Sdc) – b sTRUE

Figure 6-12 shows the “future” signal value sTRUE, the predictor output y, and
the prediction error sTRUE – y during training and recall. We used 20 training
runs with a total of 250,000 training steps to learn prediction m = 20 steps
ahead.
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FIGURE 6-11. (Continued).

Vector signal = signal{-1} | signal[1] = sTRUE
Vector x = x{-1} | x[1] = signal[m]
-------------
Vector vv = tanh(WW1 * xx) | -- note bias
Vector y = WW2 * vv | -- no limiter needed on output!
--
Vector error = sTRUE - y | -- backpropagation
Vector vvdelta = WW2% * error *  (1 - vv^2)
DELTA WW1 = WW1gain * vvdelta * xx
DELTA WW2 = WW2gain * error * vv
-----------------------------------------------------------
ERRORx5 = 5 * error[1] - 0.5 * scale
dispt y[1], ERRORx5, sTRUE

17 In Figure 6-11, this is programmed with

tdelay Sd = DD, sTRUE, tau
sTRUEdot = a * Sd/(1 + Sd^c) - b * sTRUE
d/dt sTRUE = sTRUEdot

where tdelay is a library time-delay routine that implements Sd(t) = sTRUE(t – tau) by storing
samples of its input sTRUE in an array DD declared in the experiment protocol; one sample
for each DT step of the simple Euler integration routine (Section 1-7a) used here. The exam-
ple mglass.lst in the book CD lets you experiment with the generator.



6-23. The Gamma Delay Line Layer

J. Principe and his associates [7] replaced the tapped-delay-line definition 
(6-45), or

x[i] = x[i – 1] (i = 2,3, …, nx) x[1] = s(t) (6-48)

with a cascade of simple difference equations

x[i] = x[i] + mu(x[i – 1] – x[i]) (i = 2, 3, …, nx) x[1] = s(t) (6-49a)

where mu is a positive parameter. Our compact vector notation models this
gamma delay line with a single vector difference equation (Section 3-4)

Vectr delta x = mu * (x{–1} – x) | x[1] = s(t) (6-49b)

Each tapped-delay-line neuron [Eq. (6-46)] “remembers” just one past input
value. But each neuron output x[i] in the gamma delay line is affected by all
past input values. This extra information about the past history of s(t) may
allow a reduction in the number nx of delay-line sections in the block dia-
gram of Figure 6-9 compared to that needed with a simple tapped delay line.

Figure 6-13 displays the tap-value responses to the initial condition x[1] =
1 for nx = 8 and two different values of mu. The memory effect decreases
with time. The maximum time interval analyzed by a delay-line-fed neural
network is nx COMINT for a simple tapped delay line. For a gamma delay
line, the effective memory period (memory depth) still depends on nx but is
mainly determined by the difference-equation parameter mu. Suitable values
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FIGURE 6-12. Time histories of the “future” signal sTRUE, the predictor output y, and the
scaled predictor error 5(sTRUE – y) during training and recall.



of this parameter are often found by trial and error; References [7] and [14]
discuss automatic training.

The simplest static neural networks used with an input gamma delay line are
again linear (weighted-sum) layers (6-46) or (6-47), which can be optimized
with the LMS algorithm. The tap activation functions in Figure 6-13 serve as a
useful set of basis functions for regression, as in Eq. (6-31). Reference [7] dis-
cusses more advanced networks and a number of applications.

PULSED-NEURON REPLICATION

6-24. Pulsed-neuron Models

Biological neurons propagate electrical signals, but their actual inputs and
outputs are fluctuating release rates of chemical substances (transmitters) fed
into synaptic clefts between neurons [17, 23]. Neuron activations in the sim-
plified neural networks discussed in Sections 6-1 to 6-23 model running aver-
ages of pulsed-neuron inputs and outputs.

In the receiving neuron, a transmitter substance reacts with receptor chem-
icals to change the neuron-membrane permeability to ions passing into and
out of the neuron. Multiple excitatory and/or inhibitory inputs roughly add
with different individual “gains” and “fire” the neuron when their weighted
sum exceeds a threshold value. “Firing” or ion transition through the neuron
membrane produces a positive 20 to 300-mV voltage pulse across the mem-
brane at a specific location. This pulse propagates down a neuron fiber (axon)
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FIGURE 6-13. Response of the tap outputs of an 8-tap gamma delay line to the initial con-
dition x[1] = 1 for mu = 0.025 and mu = 0.04. Curves in the original display were in different
colors; the small squares at the bottom are color keys.



as the local positive voltage makes successive cell-membrane locations more
permeable to sodium ions from the outside. The propagated pulse eventually
produces chemical output by releasing transmitter substance at an output
synapse. The membrane voltage subsides as positive potassium ions leave the
cell, and the cell relaxes to restore equilibrium ion densities. 

The model in Figure 6-14a has an integrate-and-fire block producing pulses
y(t) shaped like those in Figures 6-14b and c, and one or more delay sections
modeling pulse propagation toward the output synapse. The pulse generator
integrates a positive input x until the output y reaches a threshold value, and then
produces a finite-duration pulse. y(t) returns to its initial value in the course of a
refractory period determined by ion-motion delays. If the positive input persists,
the process repeats and generates a pulse train. The pulse frequency increases
with the input amplitude but is limited to about 1 kHz by the refractory periods.

The simplest delay sections are represented by differential equations

(d/dt) qout = qin – qout/Tau

whose time constants Tau depend on ion exchanges and myelin-sheath insu-
lation in successive  membrane sections. More complicated differential-
equation systems can be substituted.

Each pulsed neuron, then, is represented by a few differential equations
that involve switching functions. Once one decides on such a neuron model,
it is easy to simulate layers and groups of neurons by replacing differential
equations and defined-variable assignments with DESIRE vector differential
equations and vector assignments (Section 6-25). Multiple neuron inputs can
be readily modeled by replacing the input x with a matrix-vector product A *
x or with sigmoid(A * x). The resulting pulsed-neuron models can be used in
networks such as those in the preceding sections, or in entirely new combi-
nations, especially for biological modeling.

6-25. A Simple Integrate and Fire Model

In the DYNAMIC-segment program of Figure 6-15, the neuron input x can be a
weighted sum of excitatory positive inputs and inhibitory negative inputs; only
positive values of x can fire the neuron. A neuron pulse y(t) with positive rest
value y0 and peak value peak > y0 is produced by an integrator modeled with

d/dt y = ydot

The effective integrator input ydot is produced by a combination of switch-
ing functions preceded by a step operator that ensures proper numerical inte-
gration (Sections 2-9 and 2-11). The crucial point is the use of a
difference-equation state variable (Section 2-16) z defined by the recursive
assignment (difference equation)
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z = swtch(y – peak + bb * z) [bb = (1 – y0) * peak]

We start with the integrator output y at its rest value y = y0 (Figs 6-14a and
6-15). y0 is small, so that z is negative and the relay-comparator function pro-
duces ydot = c * ydot1. Then for a positive neuron input x:

1. The neuron integrates its input x with ydot = c * ydot1 = c * x until y
reaches the firing threshold fire1.

2. y then rises rapidly with ydot = c * ydot1 = c * b1, until y = fire2 >
fire1.

3. y next rises less rapidly with ydot = c * ydot1 = c * b2, until y reaches
the peak value y = peak > fire2. At this point, z becomes positive. 

4. Now, the relay comparator produces ydot = c * ydot2, and y decays
with ydot = c * ydot2 = – r * c * y, until y returns to its rest value y0.

z then becomes negative again, and the process repeats if x > 0.
Step 3 sets the pulse width and can be omitted for about 10% extra speed

if thin, pointed pulses (Fig. 6-14c) are satisfactory.
As noted in Section 6-24, the integrate-and-fire model will be followed by

linear or nonlinear delay sections representing the pulse propagation along
the neuron membrane, for example,

d/dt(q) = y – q/TT 

6-26. Neuron-model Replication

To simulate layers or groups of multiple pulsed neurons, we replicate the
model of Figure 6-15 by declaring

STATE y[n] | ARRAY x[n], ydot[n], ydot1[n], ydot2[n], z[n]

in the experiment protocol and programming the DYNAMIC-segment lines 

Vectr d/dt y = ydot
step
Vector z = swtch(y – peak + bb * z) | -- state switch 
Vector ydot1 = x + (b1 - x) * swtch(y - fire1) + (b2 - b1) * swtch(y - fire2)
Vector ydot2 = - r * y * swtch(y - y0) | -- decay, refractory period
Vector ydot = c * comp(z, ydot1, ydot2) (6-50)
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where bb = (1 – y0) * peak is precomputed for speed. To introduce multiple
neuron inputs x[1], x[2], … x[nx], replace x with a matrix-vector product
A * x (Section 3-3). 

Pulsed neurons can be programmed to affect not only the activations but
also the parameters (threshold levels, integrator gains) of other neurons
[31]. To provide different neurons with different parameters, one needs to
only declare the desired parameters in the vector expressions of Eq. (6-50)
as vectors, as in Sections 3-3 and 3-4. In this way, pulsed neurons may pro-
duce much more sophisticated models than static neurons [1,29]. Using
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-- PULSED NEURON
---------------------------------------------------------------------
display N16 | display C17  |   display R
NN = 40000 | DT = 0.000025   |   TMAX = 3
---------------------------------------------------------------------
c = 2000 | -- integrator gain  
a = 0.001 | -- input amplitude
b1 = 0.04 | -- determines pulse rise time
b2 = 0.001 | -- determines pulse width
fire1 = 0.25 | fire2 = 0.95
y0 = 0.01 | -- rest level
peak = 1 | -- pulse amplitude
bb = (1 - y0) * peak | -- precompute for speed
r = 0.03   |  -- 1/refractory time constant
ydot = 0
drun
----------------------------------------------------------------------
DYNAMIC
----------------------------------------------------------------------
x = a * sin(2.5 * t) + a | -- positive input
d/dt y = ydot
step
--
z = swtch(y - peak + bb * z) | -- state switch 
--
ydot1 = x + (b1 - x) * swtch(y - fire1) + (b2 - b1) * swtch(y - fire2)
ydot2 = - r * y * swtch(y - y0) | -- decay, refractory time
ydot = c * comp(z, ydot1, ydot2)
------------------------------------------------------------------------------------------
X = 40 * x + 0.5 * scale | -- offset for stripchart display
Y = y - scale
dispt X,Y

FIGURE 6-15. Complete program for an integrate-and-fire model.



index-shifted vectors in the manner of Sections 6-22 and 6-23 is another
intriguing possibility.

The switched differential equations modeling pulsed neurons clearly
require more computation than the much simpler neural networks in Sections
6-1 to 6-23. On an inexpensive 2.4-GHz personal computer running Linux,
the 12-pulse vectorized integrate-and-fire program, without any delay sec-
tions, required 47 s for n = 1000 neurons, and 518 s for n = 10,000 neurons
(which probably strained the small processor’s cache memory). The assem-
bly-language version of DESIRE required 23 and 294 s on the same com-
puter. 

Our simple integrate-and fire model is only one example; Reference [31]
is an excellent review of this subject. The difference-equation scheme can be
used with many different models. 
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7
More Applications of 
Vector Models

A VECTORIZED SIMULATION WITH LOGARITHMIC PLOTS

7-1. The EUROSIM No. 1 Benchmark Problem

One of the EUROSIM benchmark problems posed by Breitenecker and
Husinsky [1] models the concentrations r, m, and f of three alkali hydrides
under electron bombardment with the state-equation system 

A = kr * m * f – dr * r B = kf * f * f – dm * m 
(dr/dτ) = A (dm/dτ) = B – A (df/dτ) = p – Lf * f – A – 2 * B

where τ is physical time, not computer time. These are nonlinear differential
equations similar to those used in population dynamics (Section 1-12), and
also in chemical reaction-rate problems. This benchmark problem is “stiff” or
difficult to integrate in the sense that the absolute ratio of the largest to the
smallest Jacobian eigenvalue exceeds 120,000 for τ = 0 [2].

7-2. Vectorized Simulation with Logarithmic Plots

Since the solutions for the given coefficient values vary over a wide range,
the benchmark problem specified logarithmic scales for the solution f and
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also for the time. Most of the 25 simulation programs submitted for the
benchmark competition [1] solved the differential equations seven times and
then obtained logarithmic scales with a plotting program. The vectorized
DESIRE program in Figure 7-1 produces all seven solutions in a single sim-
ulation run and uses a different approach to obtain logarithmic time scaling.

We relate the computer time variable t to the problem time τ so that

τ = 10t – t0 (dτ/dt) = ln(10)10t – t0 = tt

Multiplication of each given differential equation by tt then produces the
new differential-equation model

tt = ln10 * (10^(t – t0))
d/dt r = A * tt   |   d/dt m = (B – A) * tt  |  d/dt f = (p – Lf * f – A – 2 * B) * tt

The extra time-scaling operations must execute at each derivative call, not
only at the output points. But they serendipitously reduce the stiffness factor
(ratio of the Jacobian eigenvalues), so that our variable-step/variable-order
integration routine automatically uses larger integration steps DT. In any
case, the exponential time factor tt is common to all seven replicated models
and is thus computed only once per derivative call.

For logarithmic scaling of the state variable f, the program directly plots
lgfplus1 = log e * ln(f) + 1. This assignment needs to be computed only at the
sampling points and can thus follow an OUT statement (Section 1-6).

Vectorization is not really needed for such a small model. But compared to
the all-scalar model in Reference [2], vectorization reduced the benchmark
time by a factor of 4 with the display turned off, and by a factor of 2 with the
display on.

MODELING FUZZY-LOGIC FUNCTION GENERATORS

7-3. Rule Tables Specify Heuristic Functions

Regression, prediction, and controller-design problems all require construc-
tion of a function y = y(x1, x2, …) that minimizes an error measure or cost.
For regression, y = y(x1, x2, …) is a regression function designed to mini-
mize, say, a mean-square regression error (Section 6-6). In control engineer-
ing, y = y(x1, x2, …) is a controller output that depends on inputs such as
servo error and output rate. y = y(x1, x2, …) must minimize a dynamic-sys-
tem performance measure such as servo integral square error (Section 1-14). 

Regression problems usually yield to numerical methods, but accurate
optimization of a nonlinear control system may be difficult. In either case,



+

0

–
0 2 → 4

scale = 2 F[1],F[2],F[3],F[4],F[5],F[6],F[7], vs. t

-- EUROSIM Benchmark PROBLEM 1
-- demonstrates model replication, log/log plot

---------------------------------------------------------------------------------------------------------------------
irule 15 | ERMAX = 0.01 | -- GEAR-type integration
ln10 = ln(10) | loge = 1/ln10 | t0 = 3 | -- shift log t
TMAX = 1 + t0 | NN = 6000 | DT = 0.0001 | scale = 2
kr = 1 | kf = 0.1 | dr = 0.1 | dm = 1 | p = 0
---------------------------------------------------------------------------------------------------------------------
-- variables and initial values for 7 replicated models
--
STATE r[7], m[7], f[7] | ARRAY Lf[7], F[7], A[7], B[7]   
data 50,100,200,500,1000,5000,10000 | read Lf
for i = 1 to 7 | -- set equal initial values for all 7
f[i] = 9.975 | m[i] = 1.674 | r[i] = 84.99
next                           
drun
---------------------------------------------------------------------------------------------------------------------
DYNAMIC
---------------------------------------------------------------------------------------------------------------------
tt = ln10 * (10^(t-t0)) |  -- log-scales time for all 7 models
--
Vector A = kr * m * f - dr * r  |  -- precompute for speed!
Vector B = kf * f^2 - dm * m   
--
Vectr d/dt r = A * tt   |  -- 7 times 3 differential equations
Vectr d/dt m = (B - A) * tt
Vectr d/dt f = (p - Lf * f - A - 2 * B) * tt
------------------------------------------------------------------------------------------------------ display
OUT
Vector F = loge * ln(f) + 1  | -- logarithmic ordinates
dispt F[1], F[2], F[3], F[4], F[5], F[6], F[7]

FIGURE 7-1. Vectorized simulation program for the EUROSIM benchmark problem.
log/log plot of f versus t for seven values of the parameter Lf (see text).
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fuzzy-set techniques try to design y = y(x1, x2, …) heuristically by invoking
the designer’s intuition or accumulated knowledge.

First, consider a function y = y(x) of a single input, and divide the range of
x into just a few (typically between 2 and 7) mutually exclusive class inter-
vals, which may have different sizes. The class intervals can be numbered, or
they can be given names such as negative, positive, very negative, near
zero, or cold, warm, hot, and so on. We assign a corresponding small num-
ber of numerical function values y(x) by specifying a rule table such as

if x is negative, then y = –1014 
if x is near zero, then y = 0.2
. . . . . . . . . . . .

Our choice of class intervals and function values, presumably based on intu-
ition or experience, defines a function y = y(x). We can actually try this func-
tion on our regression or control problem. But y(x) is a coarsely defined and
necessarily discontinuous step function.

One can similarly construct a function y = y(x1, x2) of 2 inputs x1, x2. We
again divide the ranges of x1 and x2 into class intervals (x1 and x2 can have
different class-interval numbers and/or sizes) and try to invent a two-dimen-
sional rule table such as

if x1 is negative AND x 2 is very negative then y =1200
if x1 is negative AND x 2 is near zero then y = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have now defined a step function y = y(x1, x2) with two inputs. We can
add more inputs.

7-4. Fuzzy-set Logic

Fuzzy-set techniques also invoke heuristic rule tables but produce at least
piecewise-continuous functions instead of coarse step functions.

(a) Fuzzy Sets and Membership Functions
We replace our input class intervals with similarly labeled abstract fuzzy sets
of x values, for example, very negative, negative, near zero, positive, and
very positive. Membership of a given input value x = X in a fuzzy set E is
defined by a nonnegative membership function M(E | x) that measures the
degree to which the value X “belongs” to the fuzzy set. We regard the propo-
sition that a measured value X of x belongs to a fuzzy set E as an abstract
event with the “fuzzy truth value” M(E | X).
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Figures 7-2 and 7-3 show examples. Note that membership functions can
overlap, which means that a value X of x can “belong” to more than one fuzzy
set. Classical truth values associated with mutually exclusive (“crisp”) class
intervals can be regarded as special membership functions equal to 1 on a sin-
gle class interval and 0 elsewhere. Singleton fuzzy sets have membership
functions that equal 1 for a single “support value” x = X and are 0 elsewhere.

(b) Fuzzy Intersections and Unions
We next define membership functions for (1) the abstract event that X
belongs to the fuzzy set E1 AND to the fuzzy set E2, and (2) for the abstract
event that X belongs to the fuzzy set E1 OR to the fuzzy set E2:

M(E1 AND E2 | x) ≡ M(E1 | x) m(E2 | x) (fuzzy intersection)
M(E1 OR E2 | x) ≡ M(E1 | x) + m(E2 | x) (fuzzy union)

We call this product/sum logic.1

(c) Joint Membership Functions
For multiple input variables x1, x2, … we define multidimensional fuzzy sets
E by membership functions M(E | x1, x2, …). We extend product/sum logic to
relate multidimensional fuzzy sets to intersections of lower-dimensional
fuzzy sets in terms of joint membership functions such as

M(E | x1, x2) ≡ M(E1 AND E2 | x1, x2) ≡ M(E1 | x1) M(E2 | x2)

One can also define unions of fuzzy sets in the x1 and x2 domains, as in

M(E1 OR E2 | x1, x2) ≡ M(E1 | x1) + M(E2 | x2)]

(d) Normalized Fuzzy-set Partitions
N fuzzy sets E1, E2, …, EN form a fuzzy-set partition “covering” the
domain of x ≡ (x1, x2, …, xn) if at least one of the fuzzy-set membership
functions M(Ei | x) differs from 0 for every x. In the following sections, we
shall always use product/sum logic and normalized fuzzy-set partitions
whose membership functions add up to 1 for every value of x (see also
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1 Union and intersections can be alternatively defined by min/max logic, as in
M(E1 AND E2 | x1, x2) ≡ min[M(E1 | x1), M(E2 | x2)]
M(E1 OR E2 | x1, x2) ≡ max[M(E1 | x1), M(E2 | x2)]

Min/max logic simplifies inexpensive fixed-point controllers but usually slows floating-point
computations.
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FIGURE 7-2. Fuzzy-set membership functions before and after normalization, and a pro-
gram for experiments with different numbers and spacings of fuzzy sets. Note the effect of nor-
malization at the ends of the range. With increasing spacing, the un-normalized fuzzy sets
approximate singleton fuzzy sets, and the normalized fuzzy sets approximate conventional
class intervals.

-- GAUSSIAN FUZZY-SET MEMBERSHIP FUNCTIONS
-------------------------------------------------------------------------------
-- submodel for computing membership functions
--
ARRAY X$[1], mb$[1] | -- dummy-argument arrays
SUBMODEL fuzzmemb(N$, X$, mb$, input$)
Vector mb$ = exp(-b * (X – 2 * x)^2)
DOT sum = mb$ * 1 | ss = 1/sum | -- normalize
Vector mb$ = ss * mb$
end
--------------------------------------------------------------------------------------
scale = 3 | -- declare arrays
N = 9 | b = 10 | -- number and spread
ARRAY X[N] | -- peak ordinates
ARRAY mb[N] | -- limiter functions
-- define fuzzy-set spacing
x0 = - scale
for i = 1 to N | X[i] = (I^2 - N)/N + x0   |  next
--------------------------------------------------------------------------------------
NN = 10000 | TMAX = 1 | DT = 0.0001
--
x = - scale | drun
--------------------------------------------------------------------------------------
DYNAMIC
--------------------------------------------------------------------------------------
d/dt x = 2 * scale | -- display sweep
invoke fuzzmemb[N,X,mb,x)
Vector mb = 6 * mb - scale | -- scaled, offset display
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FIGURE 7-3a. Generating a triangle function as a difference of two limiter functions
(S. Geva and J. Sitte, IEEE Trans. Neural Networks, 3, 1994, pp. 622–624).
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FIGURE 7-3b. N overlapping triangle functions form a very useful normalized fuzzy-set
partition.



Section 7-7). This implies that all our membership functions range between
0 and 1.2

Membership functions of normalized partitions for individual variables
x1, x2, … and for combinations of such variables can be simply multiplied to
define normalized partitions of higher-dimensional domains.3

7-5. Fuzzy-set Rule Tables and Function Generators

Rule tables can relate output fuzzy-set memberships rather than numerical
values to input fuzzy-set memberships, for example, if x is very positive then
y is hot. One can then define fuzzy-set membership functions M1(Ei1 | x1),
M2(Ei2 | x2), … for each function-generator input x1, x2, …, membership
functions M(Ei | y) for the function-generator output y, and joint input–output
membership functions

M(Ei1, Ei2, ...; Ei | x1, x2, ...; y) = M1(Ei1 | x1) M2(Ei2 | x2) ... M(Ei | y)

with i1 = 1, 2, …, N1; i2 = 1, 2, …, N2, …; i = 1, 2, …, N. The fuzzy-set parti-
tion sizes N1, N2, …, N are usually small (between 2 and 7).

We now define a different type of rule table, namely, an (N1 N2 … N)-
dimensional vector whose components, similar to those of M(Ei1, Ei2, ...; Ei
| x1, x2, ...; y) can be ordered by their index combinations i1, i2, …, i. We
heuristically set the rule-table entries to 1 or 0 when we consider the corre-
sponding input–output combination as possible or impossible. These rules
normally associate a single fuzzy set in the output domain with each combi-
nation of input sets, but each output set can be selected by more than one
input combination.

The resulting fuzzy output set is the fuzzy union of all joint fuzzy
input–output sets that are not eliminated by the rule table. With
product/sum logic, tts membership function P(y) is the sum of the corre-
sponding joint membership functions M(Ei1, Ei2, ...; Ei | x1, x2, ...; y). This
is all fuzzy logic can tell us about y. Obtaining a usable “crisp” function-
generator output y(x1, x2, …) requires a heuristic defuzzification assump-
tion such as

y = (centroid defuzzification)
∫YP(Y )dY
��
∫P(Y )dY
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2 In this context, we can define the logical complement E� of E by its membership function
M(E� | x) = 1 – M(E | x).
3 Note that this requires product/sum logic.



or alternatively

y = ymax where P(ymax) is a maximum of P(y)
(maximum defuzzification)

Here, integrals and maximum are taken over the range of y. Such tech-
niques are further discussed in Reference [3].

7-6. Simplified Function Generation with Fuzzy Basis Functions

The general fuzzy-set technique outlined in Section 7-5 is complicated and
involves rather arbitrary defuzzification assumptions. Although DESIRE
allows programming this general method [4], many practical regression and
controller-design problems yield to a much simpler procedure.

Assume that we have a normalized fuzzy-set partition of the input-variable
domain and a rule table that assigns a “crisp” function output value y[i] (not
an output fuzzy set) to each fuzzy set Ei of the input-variable partition. We
then employ the weighted sum

y(x) = y[1] M(E1 | x) + y[2] M(E1 | x) + … + y[N] M(EN | x) (7-1)

as a regression or controller function designed to “fit” our rule table. x can be
a multidimensional set of variables x ≡ x1, x2, …, xn [14].

The N normalized fuzzy-set membership functions mb[i] = M(Ei | x) are often
called fuzzy basis functions. Section A-2 in the Appendix describes their appli-
cation to neural networks, where they are used much like radial basis functions
(Section 7-13). The function-generator output y(x) is determined by the heuris-
tic rule-table entries y[i] and by the number and shape of the fuzzy basis func-
tions, which are normally continuous or piecewise continuous functions of x.4

7-7. Vector Models of Fuzzy-set Partitions

(a) Gaussian Bumps—Effects of Normalization
We begin with functions of a one-dimensional argument x. To generate N
bump-shaped fuzzy basis functions mb[1], mb[2], …, mb[N] centered on N
given values X = X[1], X[2], … of x, a DESIRE program can declare vectors
X and mb with

ARRAY X[N], mb[N]
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4 With random input x, one can consider the N fuzzy-set memberships as abstract random
events with conditional probabilities M(Ei | x). The expression (7-1) is then the expected value
of y[i]. This, in fact, models a well-known hardware technique, namely, function-generator
interpolation using dither-noise injection and averaging. 



and assign X[i] values in the experiment-protocol script. The DYNAMIC-
segment lines

Vector mb = a * exp(- b*(X – x)^2)  
DOT sum = mb * 1    |    ss = 1/sum    |    Vector mb = ss * mb

then produce N Gaussian bumps and divide them by their sum to normalize
them (Fig. 7-2). The effect of normalization on the first and last fuzzy-set
membership function is realistic and intuitively plausible. The normalized
Gaussian bumps in Figure 7-2b have different amplitudes since they have the
same “spread” parameter b but are not uniformly spaced. In the following
sections, we exhibit membership functions whose spread changes with their
spacing [13, 14].

(b) Triangle Functions
Suitably overlapping triangle-shaped functions mb[i] with unity peaks at x =
x[1], X[2], …, X[N] (Fig. 7-3b) produce particularly useful normalized fuzzy-
set partitions. They can implement exact linear interpolation between adja-
cent rule-table function values.

To generate the desired triangle functions of the input x, we first use index
shifting (Section 3-6) to create N limiter functions (Section 2-8a)

Vector mb = SAT((X – x)/(X – X{1}))

Vector components with index values shifted below 1 and above N are auto-
matically replaced by zero, and we save the two end values

Mbb = mb[1] | mcc = mb[N – 1]

for use later in the program. Pairwise subtraction of index-shifted limiter
functions with

Vector mb = mb{–1} – mb

(Fig. 7-3a) then produces the desired N overlapping triangle functions mb[i]
if we overwrite mb[1] and mb[N] with

mb[1] = 1 – mbb | mb$[N] = mcc

This algorithm is twice as fast as the original algorithm in References [4]
and [5] and also uses only half the memory required by the earlier program.
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The procedure can be stored as a library submodel (Section 3-17):

ARRAY X$[1], mb$[1] | -- dummy-argument arrays 
--
SUBMODEL fuzzmemb(N$, X$, mb$, input$)

Vector mb$ = SAT((X$ - input$)/(X$ - X${1}))
mbb = mb$[1] | mcc = mb$[N$ - 1]
Vector mb$ = mb${-1} - mb$
mb$[1] = 1 – mbb | mb$[N$] = mcc
end

for function generation, regression, and control-system simulation
(Section 7-9).

(c) Smooth Fuzzy Basis Functions
It is easy to replace the piecewise-continuous triangles in Section 7-7b with
differentiable functions. The soft-limiting DESIRE library function 

sigmoid(q) ≡ 1/(1 + exp(– q))

should be used instead of the hard-limiting SAT(q) function in Section 7-7b
(Fig. 7-3a). In regression applications, such nonlinear curve fitting may allow
using fewer basis functions. The membership-function shape had almost no
effect on the controller in Section 7-9.

7-8. Vector Models for Multidimensional Fuzzy-set Partitions

Given normalized fuzzy-set partitions for each of two independent input vari-
ables x1, x2, with arrays (vectors) of membership functions 
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FIGURE 7-4. A normalized fuzzy-set partition obtained with differences of soft limiter
functions.
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mb1 ≡ [M(E11 | x1), M(E12 | x1), …, M(E1N1 | x1)]
mb2 ≡ [M(E21 | x2), M(E22 | x2), …, M(E2N1 | x2)]

the N1N2 joint membership functions (Section 7-4c) 

MB[i, k] ≡ M(E1i | x1) M(E1k | x1) (i = 1, 2, …, N1; k = 1, 2, …, N2)

form a normalized fuzzy-set partition covering the domain of joint observa-
tions x1, x2. The N1 × N2 matrix MB is neatly produced by the DYNAMIC-
segment matrix assignment (Section 3-10)5

MATRIX MB = mb1 * mb2

Our experiment-protocol scrip can define an N1N2-dimensional member-
ship-function vector mb equivalent to the N1 × N2 matrix MB by declaring
(Section 3-11)

ARRAY mb = MB[N1, N2]

This will permit us to compute the desired function (7-1) as a simple inner
product (Section 7-9).

This procedure is readily extended to three or more dimensions. For three
input variables x1, x2, x3, for example, one would declare

ARRAY mb = MB[N1, N2], mmb = MMB[N1 * N2, N3]

in the experiment-protocol script and then assign

MATRIX MB = mb1 * mb2  |  MATRIX MMB = mb * mb3

in a DYNAMIC program segment.

7-9. Example: Fuzzy-logic Control of a Servomechanism

(a) Problem Statement 
Recalling the servomechanism model in Section 1-14, we replace its linear
controller function

voltage = – k * error – r * xdot

5 If min/max fuzzy-set logic is preferred, the DESIRE matrix assignment MATRIX MB = mb1
& mb2 produces matrix elements min[M(E1i | x1), M(E1k | x1)]. But these joint membership
functions would have to be renormalized.



by a nonlinear fuzzy-logic controller function voltage(e, xdot) of the servo
error e and the output rate xdot. We define N1 = 5 fuzzy sets (very negative,
negative, small, positive, and very positive) for e and N2 = 5 fuzzy sets for
xdot with triangle membership functions such as those in Section 7-7b. We
will use the N1N2 = 25 products of these triangle functions as joint fuzzy-set
membership functions for e and xdot, assign heuristic rule-table values volt-
age[k] to each fuzzy set, and invoke Eq.(7-1) to produce the controller output
voltage(e, xdot).

(b) Experiment Protocol and Rule Table
The experiment-protocol script in Figure 7-5a first defines the triangle-func-
tion submodel described in Section 7-7b. We then declare triangle-peak-
abscissa vectors xx1, xx2 and membership-function vectors mb1, mb2 for
the servo error e and the output rate xdot with

N1 = 5 
ARRAY xx1[N1] | -- peak locations for e
ARRAY mb1[N1] | -- membership functions for e
--
N2 = 5
ARRAY xx2[N2] | -- peak locations for xdot
ARRAY mb2[N2] | -- membership functions for xdot

We next declare the N1 × N2 joint-membership matrix M12 and an equivalent
N1N2-dimensional joint-membership vector m12, as in Section 7-8:

ARRAY M12[N1, N2] = m12 | --     joint memberships

The N1 × N2 rule-table vector ruletabl is declared with 

ARRAY ruletabl[N1 * N2] | -- controller rule table

We use data/read assignments to fill the triangle-peak-location arrays xx1,
xx2 with the values

–2emax, 0.05emax, 0, 0.05emax, 2emax for e
–2xdotmax, -0.5xdotmax, 0, 0.5 dotmax, 2xdotmax for xdot

where emax = xdotmax = 1. We fill the rule-table array rultabl as follows:

if e is very negative –8k–8r, –8k–r, –8k, –8k+r, –8k+8r 
if e is negative –2k–2r, –2k–r, –5k, –2k+r, –2k+2r
if e is small –2r, –0.08r, 0, 0.08r, 2r 
if e is positive 2k–2r, 2k–r, 5k, 2k+r, 2k+2r
if e is very positive 8k–8r, 8k–r, 8k, 8k+r, 8k+8r

Modeling Fuzzy-logic Function Generators 183



184 More Applications of Vector Models

Successive entries in each row refer to xdot = very negative, negative,
small, positive, very positive, and k = 0.35 and r = 2. Note that we wrote
each rule-table entry in the form αk + βr. αk is our intuitive guess at the
controller-output contribution due to e, and βr is our idea of the contribu-
tion due to xdot.

Our choices of peak-location abscissas and rule-table entries express a
heuristic guess for a controller design. In this example, we decided to use
larger-than-linear controller gains for large servo errors and little or no damp-
ing for very small servo errors. Our results (Fig. 7-6a) did produce a better
noise-following and step-input response than a linear controller.

The remainder of the experiment-protocol script in Figure 7-5a sets sys-
tem parameters for the fuzzy-logic-controlled servomechanism and also
for a similar servo using a linear controller. The script then calls a simula-
tion run to display the time histories of both servomechanisms for compar-
ison (Fig. 7-6a). Another simulation run exercises a second DYNAMIC
program segment to display the fuzzy-set membership functions for the
servo error e.

(c) DYNAMIC Program Segment and Results
The DYNAMIC program segment in Figure 7-5b invokes the triangle-func-
tion submodel described in Section 7-7b twice to generate the fuzzy-set
membership functions mb1[k] and mb2[k] for e and xdot. The desired con-
troller output voltage voltage(e, xdot) is then produced as a DOT (Section
3-7a):

DOT Voltage = ruletabl * m12

Figure 7-6a shows the servo response to a random-noise input together with
that obtained with an optimized linear controller. Results are comparable to
those produced with an early version of DESIRE in References [4,5], but
our new program is simpler and faster. In practice, these experiments must
be repeated with different signal amplitudes, since the control system is non-
linear.

FIGURE 7-5a. The experiment-protocol script for the fuzzy-logic-controlled servomech-
anism defines the triangle-function submodel, sets up triangle-peak abscissas, rule table, and
system parameters, and calls a simulation run. Another simulation run uses a second
DYNAMIC program called members to display the fuzzy-set membership functions.



-- FUZZY-LOGIC-CONTROLLED SERVOMECHANISM 
-- also simulates a similar linear servo for comparison

---------------------------------------------------------------------------------------------------
-- triangle-function partition 

ARRAY X$[1], mb$[1] | -- dummy-argument arrays
SUBMODEL fuzzmemb(N$, X$, mb$, input$)

Vector mb$ = SAT((X$ - input$)/(X$ - X${1}))
mbb = mb$[1] | mcc = mb$[N$ - 1]
Vector mb$ = mb${-1} - mb$
mb$[1] = 1 - mbb | mb$[N$] = mcc
end

---------------------------------------------------------------------------------------------------
-- declare arrays for e, xdot fuzzy-set membership functions
--
N1 = 5
ARRAY xx1[N1] | -- peak locations for e
ARRAY mb1[N1] | -- membership functions for e
--
N2 = 5
ARRAY xx2[N2] | -- peak locations for xdot
ARRAY mb2[N2] | -- membership  functions for xdot
--
ARRAY M12[N1, N2] = m12 | -- joint memberships
ARRAY ruletabl[N1 * N2] | -- controller rule table
---------------------------------------------------------------------------------------------------
-- read membership-peak abscissas
emax = 1 | xdotmax = 1
data -2*emax, -0.05 * emax, 0, 0.05 * emax, 2 * emax
data -2*xdotmax, -0.5*xdotmax, 0, 0.5*xdotmax, 2*xdotmax
read xx1,xx2
---------------------------------------------------------------------------------------------------
A = 1.5 | w = 1
B = 300 | maxtrq = 1 | g1 = 10000 | -- servo parameters
g2 = 2 | R = 0.6
k = 0.3500 | r = 2 | -- fuzzy-controller parameters
kk = 10 | rr = 0.1500 | -- linear-controller parameters
---------------------------------------------------------------------------------------------------
-- rule table
data -8*k-8*r, -8*k-r, -8*k, -8*k+r, -8*k+8*r | -- high gain 
data -2*k-2*r, -2*k-r, -5*k, -2*k+r, -2*k+2*r | -- for large errors
data -2*r, -0.08*r, 0, 0.08 * r, 2*r | --  … and no damping 
data 2*k-2*r, 2*k-r, 5*k, 2*k+r, 2*k+2*r  | -- for small errors
data 8*k-8*r, 8*k-r, 8*k, 8*k+r, 8*k+8*r
read ruletabl
----------------------------------------------------------------------------------------
NN = 4000 | TMAX = 10 | DT = 0.001  |   scale = 0.08
p = A * ran() | -- must initialize noise!
drun | -- make a run
write “type go to see membership functions” | STOP
----------------------------------------------------------------------------------------
DT = 0.00001 | NN = 40000
scale = 5 | TMAX = 0.5
e = -2.5 | -- start of display sweep
drun members | -- show the membership functions 

185



186 More Applications of Vector Models

-------------------------------------------------------------------------------------------------------------
d/dt pp = -w * pp + p | d/dt u = -w * u + pp | -- low-pass noise
e = x - u | -- servo error
-- compute membership functions for e and xdot
--
invoke fuzzmemb(N1,xx1,mb1,e) | -- fuzzy sets for e
invoke fuzzmemb(N2,xx2,mb2,xdot) | -- fuzzy sets for xdot
--
MATRIX M12 = mb1 * mb2 | -- make joint membership functions
DOT Voltage = ruletabl * m12 | -- rule-table defuzzification
--
d/dt V = -B * V + g1 * Voltage | -- motor-field buildup
torque = -maxtrq * tanh(g2 * V/maxtrq) | -- servo torque
d/dt x = xdot | d/dt xdot = torque - R*xdot | --  servo dynamics
-------------------------------------------------------------------------------------------------------------
-- linear servo for comparison
ee = xx – u | -- servo error
VOLTAGE = -kk * ee – rr * xxdot | -- linear controller
d/dt VV = -B * VV + g1 * VOLTAGE | -- motor-field buildup 
--
Torque = maxtrq * tanh(g2 * VV/maxtrq) | -- motor torque
d/dt xx = xxdot   |  d/dt xxdot = Torque – R * xxdot | --  dynamics
--
OUT
p = A*ran() | -- noise is sampled
-------------------------------------------------------------------------------------------------------------
label members
d/dt e = 2 * scale | -- display sweep 
invoke fuzzmemb[N1, xx1, mb1, e) | -- fuzzy sets for e
Vector mb1= 7.5 * mb1 – scale | -- scale, offset display of mb1

FIGURE 7-5b. DYNAMIC program segments for the fuzzy-logic controller. The main
DYNAMIC segment generates time histories. An extra DYNAMIC program segment displays
the fuzzy-set membership functions for the servo error e.

PARTIAL DIFFERENTIAL EQUATIONS

7-10. The Method of Lines

The numerical method of lines (MOL) reduces a partial differential equation to
a set of ordinary differential equations [6–10]. MOL is not the best general-
purpose method for solving partial differential equations; finite-difference
programs are more general and are usually more convenient and accurate.
But MOL is often attractive for process-control simulation, because MOL-
generated ordinary differential equations representing reactors or heat
exchangers are simply solved together with the ordinary differential equa-
tions modeling the rest of the control system.
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The narrow membership function in the center is used to suppress servo damping for small
servo errors.
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7-11. The Vectorized Method of Lines

(a) Introduction
The simplest partial-differential-equation problems involve functions u =
u(t, x) of the time t and one space coordinate x. We will use subscript nota-
tion for partial derivatives, as in

∂u/∂t ≡ ut ∂u/∂x ≡ ux ∂2u/∂x2 ≡ uxx . . .

A useful example is the one-dimensional heat-conduction equation or diffu-
sion equation

ut = uxx (7-2)

satisfied by the temperature u = u(t, x) in a uniform rod extending from x = 0
to x = L. We want to find the time histories of u(x, t) = u[1], u[2], …, u[n] at
n uniformly spaced points x[1] = 0, x[2], ..., x[n] = L along the rod. 

MOL replaces uxx with one of several possible difference approximations,
say {u[i – 1] – 2u[i] + u[i + 1])}/DX2 and then solves the resulting system

(d/dt)u[i] = {u[i – 1] – 2u[i] + u[i + 1])}/DX 2 (i = 1, 2, ..., n)

of n ordinary differential equations for x[1], x[2], …. Vectorization represents
this system as a single vector differential equation. Reference [9] shows how
boundary values of the u[i] can be set for given boundary conditions, but this
is a problem-specific and error-prone procedure.

(b) Using Differentiation Operators
Schiesser [6] replaced ad hoc procedures for selecting difference approxima-
tions and setting initial conditions with a systematic approach. He declared
separate n-dimensional arrays ux, uxx, … for the space derivatives ux, uxx,
… and defined a Fortran function DDx that operates on u to produce ux, on
ux to produce uxx, and so on:

ux = DDx(u) uxx = DDx(ux) …

We will implement such space differentiations with a submodel (Section
3-17) [9]. DESIRE submodels do not impose any runtime function-call over-
head and can be stored for reuse. Table 7-1 lists useful submodels for second-
and fourth-order central-difference derivative approximations.

The experiment-protocol script in Figure 7-7 declares an n-dimensional
state vector u and n-dimensional vectors ux and uxx with

STATE u[n] | ARRAY ux[n], uxx[n]
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Table 7-1 Submodels for Schiesser’s Partial-Derivative Operators

(a) Second-Order Central-Difference Approximation 

To relate an array v ≡ (v[1], v[2], …, v[n$]) to the corresponding derivative array vx ≡
(vx[1], vx[2], …, vx[n$]), use 

vx[i] = (v[i + 1] – v[i – 1])/2DX (i = 2, 3, ... , n$ – 1)
vx[1] = (- 3v[1] + 4v[2] – v[3])/2DX vx[n$] = (3v[n$] – 4v[n$ – 1] + v[n$ – 2])/2DX

This is implemented with the DESIRE submodel

SUBMODEL DDx(n$, bb$, v, vx)
Vector vx = (v{1} – v{-1}) * bb$
vx[1] = (-3 * v[1] + 4 * v[2] – v[3]) * bb$  (
vx[n$] = (3 * v[n$] – 4 * v[n$ – 1] + v[n$ – 2]) * bb$
end [set bb$ = 1/(2 DX)]

Note that the assignments to the end values vx[1] and vx[n$] overwrite the end values of the
vector assignment. The index-shift operation also automatically sets v[i] = 0 for i < 1 or i > n$
(Section 3-6).

(b) Fourth-order Central-difference Approximation 

The corresponding fourth-order submodel is [6,9]

SUBMODEL DDx(n$, bb$, v, vx)
Vector vx = (2 * v{–2} – 16 * v{-1} + 16 * v{1} – 2 * v{2}) * bb$
vx[1] = (– 50 * v[1] + 96 * v[2] – 72 * v[3] + 32 * v[4] –6 * v[5]) * bb$
vx[2] = ( – 6 * v[1] – 20 * v[2] + 36 * v[3] –12 * v[4] + 2 * v[5]) * bb$
vx[n$-1] = (– 2 * v[n$-4] + 12 * v[n$-3] - 36 * v[n$-2] + 20 * v[n$-1] + 6 * v[n$]) * bb$
vx[n$] = (6 * v[n$-4] – 32 * v[n$-3] + 72 * v[n$–2] – 96 * v[n$–1] + 50 * v[n$]) * bb$
end [SET bb$ = 1/(24 DX)]

The end-value assignments again overwrite part of the vector assignment.

The initial temperature u(x, 0) has to be 8000 K for all x along the rod. At x =
0, the rod is insulated, but at x = L it radiates according to a fourth-power law,
so that we have mixed-type boundary conditions at the ends of the rod:

ux = 0 (for x = 0, all t) ux = E[UA4 – u(L)4] (for x = L, all t)  

E and UA4 = UA4 are given constants. The experiment-protocol script sets the
given initial state-variable values u[i] with

for i = 1 to n | u[i] = scale | next

where the graph scale scale is set equal to the given initial temperature
u(x, 0) = 8000.

The DYNAMIC program segment in Figure 7-7 invokes DDx to produce
the partial-derivative vector ux with

invoke DDx(n, bb, u, ux)
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HEAT-CONDUCTION PARTIAL DIFFERENTIAL EQUATION
----------------------------------------------------------------------------------------------------------------------
ARRAY vx$[1], v$[1] | -- dummy arrays for SUBMODEL
--
-- Schiesser numerical-differentiation operator
--
SUBMODEL DDx(n$, bb$, v$, vx$)

Vector vx$ = bb$ * (v${1} - v${-1})
vx$[1] = bb$ * (-3 * v$[1] + 4 * v$[2] - v$[3])
vx$[n$] = bb$ * (3 * v$[n] - 4 * v$[n-1] + v$[n-2])
end

-----------------------------------------------------------------------------------------------------
irule 15 | ERMAX = 0.001 |  -- Gear-type integration
n = 51
STATE u[n] | ARRAY ux[n], uxx[n], U[n]
-----------------------------------------------------------------------------------------------------
scale = 8000 | TMAX = 2 | NN = 1200
for i = 1 to n | u[i] = scale | next | -- initial conditions
L = 2 | UA = 400 | E = 1.73E-09 | UA4 = UA^4
--
DX = L/(n - 1) | bb = 1/(2 * DX)
DT0 = 0.0025 | DT = DT0/(n^2)
--
drun
-----------------------------------------------------------------------------------------------------
DYNAMIC
-----------------------------------------------------------------------------------------------------
invoke DDx(n, bb, u, ux) |  -- differentiate u to get ux
ux[1] = 0 |  ux[n] = E *   (UA4 - u[n]^4) | -- boundary values 
invoke DDx(n, bb, ux, uxx) | -- differentiate ux to get uxx
Vectr d/dt u = uxx

u

400,000 DT

+

0

–
0 1 2→

scale = 8000 u[1],u[0.1*n],u[0.2*n],u[0.3*n],u[0.4*n],u[0.5*n... vs. t
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and then overwrites the end values ux[1] and ux[n] to establish the given
boundary values

ux[1] = 0 | ux[n] = E * (UA^4 – u[n]^4) 

DDx is invoked again to generate uxx with

invoke DDx(n, bb, ux, uxx) 

The given partial differential equation (7-2) is then programmed as

Vectr d/dt u = uxx (7-3)

This simple diffusion problem was solved using Gear-type integration with
maximum relative error ERMAX = 0.001. An inexpensive 2.4-GHz personal
computer produced the solution in less than 20 ms with the display turned off.
Runtime compilation also took less than 20 ms. Interestingly, the solution at
x = L for n = 11 was within 0.2% of that for n = 51.

(c) Numerical Problems
The programming technique described in Section 7-11a is convenient, and
the problem compiles as easily for n = 200 as for n = 10 if one does not run
out of memory. But the solution accuracy must be critically reviewed in every
case (see also Section 7-13).

First, derivative approximations involve small differences of larger num-
bers. With double-precision (64-bit) arithmetic, round-off errors are usually
negligible. But note that the differential-equation system (7-3) implies differ-
ential-equation time constants of the order of DX2. Simple fixed-step integra-
tion rules then require integration steps DT of that order of magnitude [6], and
the total number of operations would increase (for our case of one space
dimension) with n3. MOL differential-equation systems can involve larger
time constants as well (“stiff” system), so that the use of a variable-step
implicit integration rule is indicated. 

Figure 7-7 shows how the integration step DT changes. Our simple heat-
conduction example was easy to solve because u changes rapidly only for
small x, and then only initially. But it is not always so easy to obtain a stable
solution. References [6,7] show more examples.

FIGURE 7-7. Solution and program for the heat-conduction or diffusion equation (see text).
Display commands are not shown.
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7-12. The Heat-conduction Equation in Cylindrical Coordinates

The partial differential equation

ut = uxx + ux/x (7-4)

models axially symmetric heat conduction in an infinitely long cylinder of
radius R, using cylindrical coordinates with radius x [6]. We shall solve the
partial differential equation (7-4) for the temperature u(x, t), given the initial
temperature u(x, 0) = 0 and the fixed boundary temperature u(R, t) = u0. We
need no experiment-protocol loop for the initial u[i] = 0, since all array com-
ponents default to 0. But on the cylinder axis (x = 0), we must program the
boundary condition ux(0, t) = 0 for all values of t.

Figure 7-8 shows the complete program. The experiment-protocol script
defines n radius values x[1] = 0, x[2],…, x[n] = R of the radius x with

DX = R/(n-1) and for i = 1 to n | x[i] = (i - 1) * DX | next (7-5)

The DYNAMIC program segment derives the vectors ux and uxx and sets the
given boundary conditions for u[n] = u0 and ux[1] = 0 by overwriting u[1]
and u[n] as in Section 7-11. The partial differential equation (7-4) is then rep-
resented by

Vectr d/dt u = uxx + ux/x

To avoid division by 0, we overwrite the differential equation for u[1] with
the correct differential equation

d/dt u[1] = 2 * uxx[1]

derived by l’Hôspital’s rule (ux/x → uxx/1 as x → 0). Figure 7-8 shows solu-
tion time histories of the temperature u for the n uniformly spaced radius val-
ues defined by Eq. (7-5).

7-13. Generalizations

Our space-derivative submodels apply to many systems of parabolic linear or
nonlinear partial differential equations with one space dimension, but problems

FIGURE 7-8. Solution of the partial differential equation for radial heat conduction in an
infinite cylinder.  Display commands are not shown.



-- HEAT-CONDUCTION PARTIAL DIFFERENTIAL EQUATION
-- radial heat conduction, in cylindrical coordinates; x is radius
----------------------------------------------------------------------------------------------------
ARRAY vx[1], v[1] | -- dummy arrays for SUBMODEL
--
SUBMODEL DDx(n$, bb$, v, vx )

Vector vx = bb$ * (v{1} - v{-1})
vx[1] = bb$ * (-3 * v[1] + 4 * v[2] - v[3])
vx[n$] = bb$ * (3 * v[n] -  4 * v[n-1] + v[n - 2])
end

----------------------------------------------------------------------------------------------------
irule 15 | ERMAX = 0.001 | -- Gear-type integration
n = 51
STATE u[n] | ARRAY x[n], ux[n], uxx[n]
----------------------------------------------------------------------------------------------------
R = 1 | u0 = 25 | -- cylinder radius, surface temperature
scale = u0
--
DX = R/(n - 1) | bb = 1/(2 * DX)
DT0 = 0.00025 | DT = DT0/(n^2)
TMAX = 0.5 | NN = 1000
--
for i = 1 to n   |  x[i] = (i-1) *   DX   |   next  
-- initial conditions u[i] = 0 need not be programmed
drun
--------------------------------------------------------------------------------------------------
DYNAMIC
--------------------------------------------------------------------------------------------------
u[n] = u0 | -- set boundary value at x = R for each t
invoke DDx(n, bb, u, ux) | -- differentiate u to get ux
ux[1] = 0 |  -- set boundary value for x = 0
invoke DDx(n, bb, ux, uxx) | -- differentiate ux to get uxx
Vectr d/dt u = uxx + ux/x | -- note: not valid for x = 0
d/dt u[1] = 2 * uxx[1] | -- from l’Hopital’s rule

u

4000 DT

+

0
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of order higher than 1 in the time dimension often run into serious numerical-
stability problems. Schiesser and Silebi successfully solved the advection
equation [6]

ut = – Vux

and the related partial differential equation

ut = – Vux + a(U – u)

which models a simple heat exchanger with flow velocity V (Section 7-14)
[7]. But direct application of the space-derivative submodels in Table 7-1 to
the wave equation

utt = auxx

fails. Schiesser [6] solved this problem by deriving a second-derivative oper-
ator for computing uxx in one step, but boundary-condition setting becomes
more complicated. 

For problems with more than one space dimension, the vector compiler
produces ordinary differential equations just as easily, for one can treat, for
example, two-dimensional arrays as equivalent vectors (Section 3-11). But
assignment of multidimensional boundary values is likely to be cumber-
some, just as it would be in a Fortran program. An intelligent choice of the
coordinate system can simplify model and program, as in the example of
Figure 7-12.

7-14. A Simple Heat-exchanger Model

In the simple heat-exchanger model programmed in Figure 7-9a, u(x, t) is the
temperature of a fluid running through a tube between x = 0 and x = L. The
initial fluid temperature is u = T0c = 0. The fluid transfers heat to or from a
surrounding constant-temperature annulus; longitudinal heat conduction is
neglected. An initial step change Tec in the inlet temperature at x = 0 then
travels down the tube by advection. u(x, t) satisfies the partial differential
equation

ut = – Vux + a(U – u)

where V is the constant fluid velocity, and U the annulus temperature, which
is assumed to be constant here. The program in Figure 7-9 solves this partial
differential equation using the second-order Schiesser differentiation opera-
tor as in Section 7-11.



Partial Differential Equations 195

-- SIMPLE HEAT EXCHANGER (Schiesser and Silebi, 1997)
---------------------------------------------------------------------------------------------
display N1   |   display C8   |   display R
--------------------------------------------------------------------------------------------- --
Schiesser numerical-differentiation operator
--
ARRAY vx[1], v[1] | -- dummy arrays for submodel
SUBMODEL DDx(n$, bb$, v, vx)

Vector vx = (v{1} - v{-1}) * bb$
vx[1] = (-3 * v[1] + 4 * v[2] - v[3]) * bb$
vx[n$] = (3 * v[n$] – 4 * v[n$ - 1] + v[n$ - 2]) * bb$
end

---------------------------------------------------------------------------------------------
L = 100 | -- heat-exchanger tube length
V = 10 | -- flow velocity
rho = 1 | -- density of fluid in tube
CP = 1 | -- specific heat of fluid
D = 2 | -- tube diameter
H = 0.1 | -- heat-transfer coefficient
a = 4 * H/(rho * CP * D)
--
Tac = 100 | -- constant annulus temperature
T0c = 0 | -- initial temperature in tube
Tec = 50 | -- tube-entry temperature
--------------------------------------------------------------------------------------------------------------
n = 201 | STATE u[n] | ARRAY ux[n]
--
DX = L/(n-1) | bb = 0.5/DX
DT = 0.0005 | TMAX = 10 | NN = 20000 | scale = 100
irule 4 | — RK4 rule   
----------------
X = 0.5 * (n-1) * DX/V | --

time delay used in theoretical solution
---------------------------------------------------------------------------------------------
-- program initial conditions u[k] 
for k = 1 to n  |  u[k] = T0c  |  next
U = Tac | — constant annulus temperature
drun | write “n = “;n
--------------------------------------------------------------------------------------------------------------
DYNAMIC
--------------------------------------------------------------------------------------------------------------
u[1] = Tec | — set tube-entry boundary value for u
invoke DDx(n, bb, u, ux) | -- differentiate u to get ux
Vectr d/dt u = - V * ux + a * (U - u)
--
------------------------------ compare u with theoretical solution f
—
f = 2 * (Tac + (T0c – Tac * exp(-a * t) * (1 - swtch(t - X)) 

+ swtch(t - X) * ((Tec -  Tac) * exp(-a*X))) - scale
uu = 2 * u[0.5*(n-1)] – scale | errx5 = 2.5 * (uu - f) - 0.5 * scale
dispt uu, errx5, f

FIGURE 7-9a. Program for computer simulation of a simple heat exchanger.
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n = 201

n = 501

f
u

error x 5

u
f

error x 5

+

0
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0 5 10→

scale = 100 uu,err×5,f vs. t

+
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–
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scale = 100 uu,err×5,f vs. t

FIGURE 7-9b. Theoretical and computed time histories of the heat-exchanger tube temper-
ature u(x, t) for x = L/2.

For each value of x along the tube, the theoretical solution in Figure 7-9
combines an exponential function increasing from u(x, t) = 0 to u(x, t) = U
with a step-function temperature change due to advection of the inlet tem-
perature step. Figure 7-9b compares this theoretical solution with the
numerical solution. The oscillatory response shown for n = 201 and 501



Replication of Agroecological Models on Map Grids 197

is typical of numerical solutions of hyperbolic partial differential
equations [6,7].

REPLICATION OF AGROECOLOGICAL MODELS ON MAP GRIDS

7-15. A Geographical Information System

The SAMT (Spatial Analysis and Modeling Tool) program package devel-
oped by R. Wieland [10,11] is a simple geographical information system for
description and manipulation of ecological data. SAMT declares and stores
arrays of numerical landscape-feature values for a specified grid of geo-
graphical locations. Examples of landscape features are

• geographical coordinates for each grid point (x, y, altitude)
• physical data such as temperature, soil moisture, and species counts at

each grid point.

SAMT can assign and calculate functions that relate different landscape fea-
tures at any one grid point, say

q1 = q2 + q3    q1= cos(q2)    q1 = calc(q2, q3, ... )

Functions such as calc(q2, q3, ... ) are either numerical expressions or regres-
sion functions previously created by simple neural-network or fuzzy-set
models [11].

SAMT can also assign and store grid-point data values that depend on data
at other grid points, such as the distance of the current grid point from another
grid point, say, from a city or from a bird’s nest; or the shortest distance to a
river or road. SAMT can, moreover, accumulate statistics such as averages
and statistical relative frequencies for an entire set of grid points. Last but not
least, SAMT can draw maps showing grid-point data values in different col-
ors, or showing contour lines for different landscape features (Fig. 7-10).

7-16. Modeling the Evolution of Landscape Features

The original SAMT database described a landscape at coarsely spaced
sampling times t (e.g., once per day, per month, and per year), but the program
did not relate landscape features at different sampling times. In contrast,
DESIRE uses small time steps DT to simulate continuous changes. A combi-
nation of SAMT and DESIRE can model changes of landscape features at
each separate grid point with differential equations and/or difference equations.
SAMT/DESIRE runs under both Linux and Windows (Figs 7-11 and 7-12).
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FIGURE 7-10. A map of relative vegetation density produced by the SAMT geographical
information system [12]. The original display was in color.

FIGURE 7-11. A self-scaling SAMT/DESIRE graphics window. Three-dimensional graphs
can also be displayed.
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Some landscape features will be state variables with specified initial val-
ues. Other landscape features, such as intermediate results and data trans-
ferred to and from the SAMT data base, are defined variables, as described in
Sections 1-2 and 2-1. One might, for example, have a differential-equation
system modeling competition between local predator and prey populations
(Section 1-12) at each grid point. Local crop growth is another promising
application [15].
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Appendix

ADDITIONAL REFERENCE MATERIAL

A-1. Example of a Radial-basis-function Network 

Figure A-1 shows a complete program for a radial-basis-function network
learning the target function Y(x) = 0.95 * sin(x[1]) * cos(x[2]) * (x[3] – 0.5).
The input-pattern dimension is nx = 3. Like all other example programs, this
program is in the book CD. One can easily try different target functions Y(x),
different numbers n of radial-basis centers, and different values of the
Gaussian-bump spread parameter a.

The program incorporates several of the programming tricks introduced in
Chapter 6. The experiment-protocol script calls two separate DYNAMIC
program segments. The DYNAMIC segment labeled COMPETE runs first.
This implements a competitive-layer network1 that finds an n × nx template
matrix P whose n rows represent cluster centers for uniformly distributed
input vectors Vector x = 1.5 * ran() (Sections 6-14 to 6-16). We then use these
cluster centers as radial-basis centers. Different input distributions can be
substituted if desired.

Advanced Dynamic-system Simulation: Model-replication Techniques 
and Monte Carlo Simulation By Granino A. Korn
Copyright © 2007 by John Wiley & Sons, Inc.

1 crit = 0 specifies the Ahalt-type conscience algorithm (Section 6-16b).
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-- RADIAL-BASIS-FUNCTION NETWORK
----------------------------------------------------------------------------------------------------
nx = 3 | ARRAY x[nx] | --input
n = 300 | -- number of radial-basis centers
ARRAY P[n,nx], v[n], h[n], z[nx] | -- for competition
ARRAY ff[n] + ff0[1] = f | ff0[1] = 1 | -- f has bias component
ARRAY pp[n]
-- weights include biases
ARRAY W[1,n+1], y[1], error[1]
----------------------------------------------------------------------------------------------------
lratex =0.2 | lratef = 0.3 |  kappa = 0.9998 | lrate0 = 0 | a=4
crit = 0 | -- crit = 0 for FSCL conscience
NN = 100000 | -- number of trials for template generation
----------------------------------------------------------------------------------------------------
-- learn radial-basis centers
drun COMPETE
write "type go to continue" | STOP
----------------------------------------------------------------------------------------------------
--- template matrix P generates squared radii
for k = 1 to n
pp[k] = 0
for j = 1 to nx  |   pp[k] = pp[k] + P[k,j]^2   |   next
next
----------------------------------------------------------------------------------------------------
-- now train radial-basis-function network
NN = 100000  |  --  number of training trials
drun
write "type go for a recall run"  |   STOP
NN = 2000  |   lratef = 0  |   lrate0 = 0  |  -- recall run
drun
----------------------------------------------------------------------------------------------------
DYNAMIC
----------------------------------------------------------------------------------------------------
lratef = kappa * lratef + lrate0 | -- reduce learning rate
--
Vector x = ran() | -- training pairs
Y=sin(x[1])*cos(x[2])*(x[3]  - 0.5)  |  -- or use other functions
--
-- xx - 2 * P * x + pp is the vector of squared radii
DOT xx = x * x   |   Vector ff = exp(a * (2 * P * x - xx - pp))
--
Vector y = W * f   |  -- radial-basis-function expansion

FIGURE A-1a. Complete program for a three-dimensional radial-basis-function network
learning the three-input function Y(x) = 0.95 * sin(x[1]) * cos(x[2]) * (x[3] - 0.5).  Other error dis-
plays could be used.  This program employs the Casasent algorithm described in Section 6-13b.



The main DYNAMIC program segment represents the radial-basis-function
network proper. We use the efficient Casasent-type algorithm of Section 6-13b
to compute the distances between the current input vector x and the n = 300
radial-basis centers. This allows us to compute the desired vector f of n radial-
basis functions f[k]. The LMS algorithm then produces the optimal connection-
weight matrix W for the radial-basis-function expansion

Vector y = W * f

Note that our expansion includes a bias term implied by the array declaration

ARRAY ff[n] + ff0[1] = f   |   ff0[1] = 1

as described in Footnote 3, Chapter 6.

A-2. A Fuzzy-basis-function Network

Figure A-2a represents a fuzzy-basis-function network learning Y(x) = 2 *
sin(0.5 * x[1]) * cos(0.1 * x[2]). The input-pattern dimension is nx = 2. We
use products of the triangular membership functions defined by the submodel
in Section 7-7b as basis functions.

There are N1 membership functions mb1 for x[1] peaking at x[1] = X1[1],
X1[2], …, X1[N1], and N2 membership functions mb2 for x[2] peaking at x[2]
= X2[1], X2[2], …, X2[N2], and therefore n = N1N2 fuzzy-basis centers
with coordinates X1[i], X2[k]. Simple data/read assignments allow one to
quickly enter fuzzy-basis-center coordinates X1[1], X[2], …, X1[N1] and
X2[1], X2[2], …, X2[N2] in ascending order. This enables one to try different

Additional Reference Material 203

Vector error = Y - y   |  -- LMS algorithm
DELTA W = lratef * error * f
-------------------------------------------------------- stripchart display
ERRORx10 = 10 * abs(error[1]) - scale  |   y1 = y[1]
dispxy Y, y1, ERRORx10, y1
----------------------------------------------------------------------------------------------------

label COMPETE
lratex = kappa * lratex + lrate0  |  -- reduce learning rate
Vector x = 1.5 * ran()
CLEARN v = P(x) lratex, crit   |  -- compete to get template
Vectr delta h = v   |  -- conscience counter
Vector z = P% * v
dispxy z[1], z[2]   |   -- shows 2 dimensions only

FIGURE A-1a. (Continued)



-- FUZZY-BASIS-FUNCTION NETWORK
----------------------------------------------------------------------------------------------------
FUNCTION Y(p$, q$) = 2 * sin(0.5 * p$) * cos(0.1 * q$)
----------------------------------------------------------------------------------------------------
-- triangle membership functions
--
ARRAY X$[1], mb$[1] | -- dummy-argument arrays
SUBMODEL fuzzmemb(N$, X$, mb$, input$)
Vector mb$ = SAT((X$ - input$)/(X$ - X${1}))
Mbb = mb$[1] | mcc = mb$[N$ - 1]
Vector mb$ = mb${-1} - mb$
mb$[1] = 1 - mbb | mb$[N$] = mcc
end
----------------------------------------------------------------------------------------------------
ARRAY x[2]
N1 = 7 | N2 = 5 | n = N1 * N2
ARRAY X1[N1], X2[N2]
ARRAY mb1[N1], mb2[N2], F[N1,N2] = f
ARRAY W[1,n], y[1], error[1]
----------------------------------------------------------------------------------------------------
lratef = 0.2 | kappa = 0.9999 | lrate0 = 0.0
NN=20000
------------------------------------
data -0.9, -0.5, -0.1, 0, 0.1, 0.5, 0.9   |  read X1
data -0.9, -0.5, 0, 0.5, 0.9 | read X2
--------------------------------------------------------------------------
drun | -- function-learning run
write "type go for a recall run" | STOP
lratex=0 |  lratef=0 |  lrate0=0 | NN=2000 |  display R
drun | -- recall run
---------------------------------------------------------------------------------
DYNAMIC
---------------------------------------------------------------------------------
-- lratef = kappa*lratef+lrate0 | -- reduce learning rate
--
Vector x = ran()   |   Y = TGT(x[1], x[2]) | -- training pairs
invoke fuzzmemb(N1, X1, mb1, x[1])
invoke fuzzmemb(N2, X2, mb2, x[2])
MATRIX F = mb1 * mb2 | -- joint membership functions
Vector y = W * f | Vector error = Y - y
DELTA W = lratef * error * f |  -- LMS algorithm for output y
--
----------------------------------------------- stripchart display
ERRORx50 = 50 * abs(error[1]) - scale
x1 = x[1] | x2 = x[2] | -- shorten names to fit display list!
m2 = 0.5 * (0.5 * mb1[2] + scale)
m3 = 0.5 * (0.5 * mb1[3] + scale)
M2 = 0.25 * mb2[2] | M3 = 0.25 * mb2[3]
DISPXY Y, y[1],Y, ERRORx50, x1, m2, x1, m3, x2, M2, x2, M3

FIGURE A-2a. Program for a two-dimensional fuzzy-basis-function network learning the
two-input function 2 * sin(0.5 * x[1]) * cos(0.1 * x[2]).



basis-center locations by trial and error; it should be noted that basis-function
spreads in the x[1] and x[2] directions adjust automatically when the fuzzy-
basis-center locations are changed.

The results are shown in Figure A-2b. As in Section 7-7c, sigmoid (a * q)
can be substituted for SAT(q) to try continuous basis functions.

A-3. The CLEARN Algorithm2

From Section 6-17, in

CLEARN v = W(x) lrate, crit

crit > 0 associates each template W(i) with two internal status flags, commit-
ted[i] and badmatch[i], both initially set to 0 (see also the DESIRE Reference
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mb1

mb2

y

errorx50

–1.0
–

0

+

–0.5 0.0 0.5 1. 0
Y,y1,Y,ERRORx50,p1,m2,p1,m3,p2,M2,p2,M3scale = 1

FIGURE A-2b. Display obtained with the fuzzy-basis-function network of Fig. A-2a. y and
error are plotted against the target input Y. mb1 and mb2 are plotted against their respective
arguments x[1] and x[2]. Note that different fuzzy basis functions were used for x[1] and x[2].

2 The new CLEARN algorithm described here replaces the now obsolete algorithm described
in Reference [3].



Manual) [1,2]. We start with random values for n templates. Each learning step
presents an input pattern x and finds the best-matching template pattern W(I) by
least-squares competition. Then

• If the best-matching template satisfies the resonance criterion ||x – W(I)||
< crit, update it and mark it with committed[I] = 1. This template pattern
then no longer competes for less-close matches (see below).

• For ||x – W(I)|| > crit, update W(I) if it is uncommitted (committed[I] = 0).
If W(I) has been previously committed (committed[I] = 1), do not update
W(I) but reset the current search (badmatch[I] = 1).

In other words, committed[i] = 0 flags identify as yet uncommitted tem-
plates that are allowed to acquire new patterns with or without resonance.
The process terminates when all n templates are committed. As in classical
ART, a fast-learn mode for noise-free patterns can simply set W(I) = x instead
of gradual updating.
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TABLE A-1. DESIRE Integration Rules

(a) Euler and Runge–Kutta Rules (up to 40,000 state variables)

k1 = G(x, t) * DT

irule 1 (fixed-step second-order Runge–Kutta–Heun—this is the default rule)

k2 = G(x + k1, t + DT) * DT
x = x + (k1 + k2)/2

irule 2 (explicit Euler rule, first order) 
Users may change DT as a function of t.

x  = x + G(x, t) * DT = x + k1
irule 3 (fourth-order Runge–Kutta) 

Users may change DT in the course of a simulation run.
k2 = G(x + k1/2, t + DT/2) * DT      k4 = G(x + k3, t + DT) * DT

k3 = G(x + k2/2, t + DT/2) * DT

x = x + (k1 + 2 * k2 + 2 * k3 + k4)/6

Variable-step Runge–Kutta rules compare two Runge–Kutta formulas of different
order. The step size doubles when the absolute difference is less than ERMIN, until DT
reaches DTMAX. If the system variable CHECKN is a positive integer n, then the step
size DT is halved if the absolute difference of the two expressions for the nth state vari-
able exceeds ERMAX. If CHECKN = 0, then DT is halved when the relative difference
exceeds ERMAX for any state variable. A variable-step deadlock error results if DT
attempts to go below DTMIN; the deadlocked absolute difference can then be read in
ERRMAX.

irule 4 (variable-step Runge–Kutta 4/2) compares the fourth-order Runge–Kutta
result with x = x + k2

irule 5 (second-order Runge–Kutta–Heun) is similar to irule 1, but users may change
DT during a run.

irule 6 is a spare, not currently implemented.

irule 7 (variable-step Runge–Kutta 2/1) compares 

k2 = G(x + k1, t + DT)
x = x + (k1 + k2)/2 with x = x + k1

irule 8 (variable-step Runge–Kutta–Niesse) compares

k2 = G(x + k1/2, t + DT/2) * DT
k3 = G(x - k1 + 2 * k2, t + DT) * DT
x = x + (k1 + 4 * k2 + k3)/6 with x = x + (k1 + k3)/2

(b) Adams-Type Variable-Order/Variable-Step Rules (up to 600 state variables)

irule 9 functional iteration
irule 10 chord/user-furnished Jacobian
irule 11 chord/differenced Jacobian
irule 12 chord/diagonal Jacobian approximation
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Table A-1. (Continued)

(c) Gear-Type Variable-Order/Variable-Step Rules (for stiff systems, up to 600
state variables) [1,2]

irule 13 functional iteration
irule 14 chord/user-furnished Jacobian
irule 15 chord/differenced Jacobian
irule 16 chord/diagonal Jacobian approximation

Rules 9 to 16 employ a user-specified maximum relative error ERMAX, which must
be specified in the interpreter program for all state variables; values equal to 0 are
automatically replaced by 1 (see examples orbitx.lst, to22x.lst, and rule15.lst). The
initial value of DT must be set low enough to prevent integration-step lockup.
irule 10 and irule 4 need a user-furnished n × n Jacobian matrix for n state variables,
say J (see the DESIRE reference manual).
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TABLE A-2. DESIRE Fast Fourier Transforms

1. FFT F, NN, x, y implements the discrete Fourier transform

x[i] +j y[i] ← �
NN

k =1
(x[k] + j y[k]) exp (-2πj ik / NN ) (i = 1,2, ..., NN)

FFT I, NN, x, y implements the discrete inverse Fourier
transform

x [k] + j y[k] ← �
NN

I=1
(x [i]+ j y[i]) exp (2 πj ik / NN ) (k = 1,2, ..., NN )

2. When the x[k ], y[k ] represent NN time-history samples taken at the sampling
times

t = 0, COMINT, 2 COMINT, . . . , TMAX with COMINT = TMAX/(NN – 1)

then the time-domain period associated with the discrete Fourier transform
equals

T = NN * COMINT = NN * TMAX/(NN – 1)

(not TMAX). Approximate frequency-domain sample values of the ordinary inte-
gral Fourier transform are represented by x[i] * T/NN, y[i] * T/NN.

3. If the x[i], y[i] represent NN frequency-domain samples taken at the sample fre-
quencies
f = 0, COMINT, 2 COMINT, . . . , TMAX with COMINT = TMAX/(NN – 1)
then

t represents f (frequency)
COMINT represents 1/T (frequency-domain sampling interval)
TMAX represents (NN – 1)/T
NN * TMAX/(NN – 1) represents NN/T (frequency-domain “period”)

1
�
NN
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PROGRAMS IN THE BOOK CD

The CD furnished with this book contains the regular open-software distribution
of OPEN DESIRE, including executable programs for personal computers,
source code, a comprehensive reference manual, and many examples. This soft-
ware can be freely used, modified, and redistributed under the terms of the Free
Software Foundation’s General Public License (GPL), a copy of which is part of
the distribution. The GPL states explicitly that there is no warranty of any kind.

We have included OPEN DESIRE for Linux, which can be recompiled
for other Unix-type operating systems, including Cygwin (Unix under
Microsoft WindowsTM). The Linux program is the most technically advanced
version of DESIRE, uses Xwindows graphics, and handles up to 40,000 first-
order differential equations.

OPEN DESIRE for Microsoft WindowsTM is a smaller educational ver-
sion, also written in C, and similar to the commercially available
Windows/2000 program.3 It uses MS-DOS fullscreen graphics, and handles
up to 20,000 differential equations. The educational program is available
without charge by emailing the author at gatmkom@aol.com.

OPEN DESIRE includes over 100 example programs formatted for Linux
and Cygwin (.lst files). The file userexamples.doc lists some of the titles.
For the reader’s convenience, examples referenced in the text were relabeled
with figure numbers (e.g. fig2-9.lst).

Please refer to the Web site members.aol.com/gatmkorn for revision and
new developments.

STREAMLINED OPERATION OF DESIRE PROJECTS 
UNDER LINUX

Referring to the DESIRE reference manual and the README file on the book
CD, the OPEN DESIRE distribution files are all initially installed in a single
installation directory, say /desire. User programs (.Ist files) can be moved or
written to any directory on the hard disk, say to a user’s own project directory
/projects/mynewproject. Such project directories can also contain text files,
screenshots, notes or spreadsheets with results, reports being prepared, shell
scripts, or any other files.

To run DESIRE, one opens a terminal window, cds to the installation
directory, and starts one of the DESIRE programs, say desire64, with

./desire64,

3 DESIRE/2000 uses assembly language, is twice as fast as OPEN DESIRE for Windows, and
adds more convenient control-key and mouse operations.



./desire64 1 would automatically load the last-used user program. A user
program in the installation directory /desire, say servo4.Ist, is loaded with 

rld ’servo4’

Loading user programs from another directory requires a longer command
such as

rld ’../projects/mynewproject’ or
rld ’home/username/projects/mynewproject’

But with the shell script mk_syspict.sh installed in the user’s \bin direc-
tory there is no need to type long rld commands. Simply clicking on the
servo4.Ist icon in any directory automatically loads the user program into
DESIRE. Typing erun in the terminal window then runs the program imme-
diately, and ed or edit opens the program in an editor window.

The script file mk_syspict.sh on the book CD refers specifically to the
installation directory named /desire.  It is easy to edit the script to substitute
another installation directory.

Streamlined Operation of Desire Projects under Linux 211
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Coordinate systems, 72
Correlation(s)

coefficients, 90, 97
matching, 153–154

Counterpropagation learning, 147, 155–156
Crossplotting, 2, 86–87
Cygwin

applications, xiii n1, 4, 7
signal-generator program, 57
simple backlash transfer, 54

Damped harmonic oscillator, 12–15
Damping coefficients, 25, 64, 81, 87, 120
data/read assignment, 134
Data assignments

noise studies, 106
sampled, see Sampled-data assignments

Deadspace, 44, 54
Debugging, 4
Declaration arguments, 75
Defined-variable assignments

characteristics of, 3, 10, 29
multilayer neural networks, 140
scalar, 72, 74
sorting, 12
vector, 66

Derivative approximations, 191
Derivative calls, 96
DESIRE/2000, 4
Difference equation

matrix, 70–71
parameters in, neural networks, 162–163,

167–168
programs, see Difference-equation 

programs
Difference-equation programs

combined with sampled-data operations,
35–36

mixed continuous/sampled-data system
examples, 38–41

sampled-data variables, initializing and
resetting, 38

simple, 34–37
Differential-algebraic-equation (DAE) systems, 3
Differential equation(s)

absolute value and, 49–50
code, 35–36 
data-assignment models, 32–38
Duffing’s, 15–16
limiters, 45, 49–56 
with linear harmonic oscillator, 22–24
maximum/minimum selection, 49–50
models, xiii n1, 2–3 
noisy, 122
nonlinear systems, 125 n1
parameters in neural networks, 162–163,

167–168
polar-coordinate, 18
programs, see Difference-equation programs
sampling, 8
state-variable, see Differential-equation state

variable
submodels, 76–78
switch functions, 45, 51–56 
vectors/vectorization, 61–62, 64–66, 83
Volterra–Lotka, 19–20

Differential-equation state variable
continuous, 52–56
signal generators, 56–58
signal modulators and, 56–58

Differentiation operators, 188–191
Digital controllers

guided-torpedo missile simulation, 38–40\
PID, plant simulation with, 40–41
signal quantification, 50–51
simulated, 46

Digital filters, 35
Digital signal processing, 67
Discontinuous functions, 45, 47
Discrete-event simulation, 1
Dispersion, 93
Display

colors, see Color
problems, 45–46
scale/scaling, 28, 53

DOT operations, 67, 96
drunr statements, 3–5, 19, 38, 52, 62, 71, 90
Duffing’s differential-equation system, 15–16
Dummy arrays/variables, 75, 77–78
DYNAMIC, 14
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DYNAMIC-segment variables, 5, 8–10
Dynamic-system simulation

computer modeling, 1–2
control system examples, 22–29
defined, 1
differential-equation models, 2–3
industrial applications, 1, 3
interactive modeling, 3–4
real world applications, 29–30
simple applications, 12–22
simulation software, 4

Easy5™, 4
End-of-run sample values, 90
Engineering applications, 29–30, 42, 54–55
Equation-oriented simulation programs, 4
Error messages, 5, 12 n3, 63, 67–68, 70, 75, 77
Euclidean norms, 67–68, 126, 128
Euler integration rule, 10–11, 47, 112
EUROSIM, 22, 171
Event prediction, 45–46
Expected values, 89, 93, 117
Experiment protocol 

commands, 89
default, 66
loop, 14 
in neural networks, 128, 133, 166–167
primitive, 87
program, 3–4
scripts, see Experiment protocol scripts
signal generators/modulators, 57

Experiment-protocol scripts, significance of,
8–9, 11, 14–15, 20, 25, 28, 51, 60, 64, 67,
69–71, 77, 81–83, 87, 89–91, 100, 102,
182–184

Extrapolation formula, 45

Fast compilation, 5
Fast Fourier transforms, 209
Feedback, multilayer neural networks, 154
Field-buildup delay, 22
Finite-impulse response (FIR), 158–159
First-order ordinary differential equations, 2
Fixed-point block-diagram simulation 

languages, 55
Fixed-step integration, 8–9, 14, 47, 83–84
Flat spots, 87–88
Flight simulations, 74, 123
Floating-point arithmetic, 5
Floating-point operation, 49–51
Fortran applications, 4, 63 n6, 71, 188, 194
Fourier transform, 25. See also Fast Fourier

transforms
Frequency resolution, 57–58

Frequency-response plots, 5
FSCL (frequency-sensitive competitive learning)

algorithm, 148
Full-wave rectifier, 49–50
FUNCTION declarations, 75–76
Fuzzy-basis-function network, example of,

203–205
Fuzzy logic

models, 67, 71 
rules tables, 172–174, 178–179,

183–184
servomechanism control example, 182–187
set techniques, 174–179
vector models, 179–182

Gain, 22, 28, 38, 167
Gambling returns study, 109–113
Gamma delay line layer, neural networks, 157,

162–163
Gaussian bumps, fuzzy set partitions, 176, 180
Gaussian distribution, 92, 112, 145
Gaussian noise, 89
Gaussian probability density, 115
Generalization, influential factors, 140
Generators

fuzzy logic, 172–186
pseudo-random, 67, 90, 112
signal, 56–58

Geographical information system, 197–199
Global optimization, 86
Gram-Schmidt algorithm, 132 n7
Graphs, 85, 189
Greville algorithm, 132 n7
Grids, agroecological models, 197–199
Guided-missile simulation, 25–29

Half-wave rectifier, 42
Hamming norms, 67–68
Hardware in the loop, 2
Harmonic oscillators, 64
Heat conduction equation, 190, 192
Heat exchanger model, 194–197
Heuristic defuzzification assumptions, 178
Heuristics

integration-step control, 46–47
pseudorandom-noise testing, 121

Hewlett-Packard signal generator, 56–57
Hydrodynamic-moment coefficients, 25
Hysteresis models, 53–56

if/then/else statements, 20
Image processing, 71
Index-shifted

limiter function, 180
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neural vectors, 157–158, 168
vectors, 63, 66–67

Inertia, 25
Initial conditions, 86, 88
Initial value(s), significance of, 2–3, 5, 14, 26,

28, 34, 38, 53, 61, 71–72, 83, 90, 92, 107,
117

In-line code, 77
Input/output operations, 5, 9
Integral absolute error (IAE), 24
Integral squared error (ISE), 24
Integrate-and-fire neural network, 164–166,

168
Integrated squared error (ISE), 86–87, 90
Integration

numerical, see Numerical integration
output-limited, 50
routines, 28, 36, 45–46, 57, 172
rules, 10–11, 83–84, 207–208
steps, 11–12, 45

Interactive modeling, 3–4
Inverse-square-law, 15
Invocation arrays, 75–78

Journal files, 85

Kernel function, 98–99

Landscape modeling, 71
Law of large numbers, 88 n3
Learning

biological, 125
competitive, 146–147, 150
momentum, 140
supervised, 154–155

Levenberg-Marquart algorithm, 141
Library functions, implications of, 42, 44, 50–51,

58, 61, 89
Library submodels, fuzzy set partitions, 181
lim, 42, 43
Limiters

characteristics of, 42–44
difference equations and, 49–50
DYNAMIC program segments, 78–79
fuzzy-set partitions, 180–181
outputs, numerical integration, 45–46

Linear controllers/linear control systems, 22,
24–25, 74–75

Linear filters, 158–159
Linear harmonic oscillator, 12–15
Linear transformations, 63, 72, 74
Linux, applications of, xiii n1, 4, 6, 82, 113, 197
LMS (least-mean-squares) algorithm, 132–133,

136, 139, 144, 159, 163

Logarithmic scaling, 171–172
Low-pass filter, 108
LVQ (learning vector quantization) algorithm,

154–155

Manufacturing-tolerance effects, 91–92
Masking, of vector expressions, 69
Mass-spring

-dashpot system, 12
submodel, 78
systems, 64

Mathematical analyses, 1
Mathematical laws, 88 n3
Mathematical models, 24
MATRIX, 69
Matrix operations

characteristics of, 5, 69–71
difference equations in DYNAMIC program

segments, 70–71
using equivalent vectors, 71
in experiment protocol scripts, 69–70
matrix assignments in DYNAMIC program

segments, 70–71
Matrix-vector products, 63–64
Maximum/minimum

selection, 49–50, 68–69, 98
value-holding, 53

M-dimensional combined-sample vector, 103
Mean, 89, 99, 112
Mean square

errors, 121–123, 140, 143
regression, 131, 138–139, 141–144
template-matching error, 146

Measure statistics, see Statistics
Membership functions, fuzzy set logic, 176–179,

181–187
Memory networks, 67
Method of lines (MOL), 63, 186, 188–191
Microsoft Windows™ , applications of, xiii n1,

xiv, 7, 197, 199
Minimum/maximum, fuzzy-set logic, 182
Model replication, 4, 62–63, 87
Modelica language, 4
Modeling, interactive, 3–4. See also specific

types of models
Modulation, see Signal modulation
Monte Carlo simulation 

alternative to, 121–123
applications of, xiii n1, 1–2
characteristics of, 81
control-system errors caused by noise, 119
interactive, 96
optimization, 119, 121
repeated-run, 89–95, 97, 100, 102–103 
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sequential studies, 91
vectorized, 62, 93–97, 100–103, 112, 117–119

Motor field delay, 22–24
Multilayer neural networks

backpropagation, 138–141, 155
counterpropagation, 147, 155–156
neuron-model replications, 166–168
radial-basis-function networks, 141–146, 155

Multiple parameters, 84–85
Multiple simulation runs, splicing, 20–22
Multirate sampling, 9
Multistep integration rules, 10

Nested submodels, 78
Neural network(s)

characteristics of, 67, 106
competitive learning, supervised, 154–155
delay-line input layer, 157–163, 168
illustrations of, 126
linear, 127
with memory, 155–163
multilayer, 128–130, 138–146
nonlinear multilayer, 138–146, 159–161
pattern classification, see Pattern classification

in neural networks
pulsed-neuron replication, 153, 163–168
regression classification, 130–131
simulations, 63, 69, 71, 125–130
static, 157–163, 167–168
submodels, 141
training, 126, 134, 136–137, 140, 142–143,

155
vector models, see Neural network vector

models
Neural-network vector model

a posteriori probabilities, 134–137
characteristics of, 125–127
exercising, 129–130
gamma delay line layer, 162–163
integrate-and-fire model, 164–166, 168
nonlinear, 138–141, 159
neuron-model replication, 166–167
pattern-matching-error, 136–137, 148–149
prototypes, 132, 138, 148–149, 152
quantization, 150–151
radial-basis-function networks, 141–146
simple operations, 126–127
successive sets, 130
tapped delay line, 157–159, 162

Noise
characteristics of, 105
continuous, 107–109
control-system simulations, 116–119
input test, 116–118

Monte Carlo simulations, 109–116
pseudorandom, 10, 93, 109, 121 
quantization, 51
random parameters and, 89
sampled-data random processes, 105–107
simulated, 109
vectorization and, 62

Nonlinear controllers, 22
1776 cannonball, Monte Carlo simulation studies

with air turbulence, 113, 116
gun-elevation error effects, 91–95

Nonlinear floating-point operation, 49–50
Nonlinear oscillator, 15
Normalization

fuzzy-set partitions, 175–180, 182
multilayer neural networks, 154
neuronal-layer patterns, 128

Nuclear-reactor simulation, 72–74
Null matrices, 69
Numerical integration, 10–11

OPEN DESIRE, overview of
CD contents, 210
command scripts, 5
command windows, 6–7
defined, xiii n1
Linux applications, xiv, 4, 6

Open Source programs, xiii n1
Operator integration-step control, 46–47
Optimization

global, 86
implications of, 86–88
Monte Carlo, 119–121
neural-network patterns, 133, 141, 143
studies, 67, 69, 87–88

Oscillators
harmonic, 64
linear harmonic, 12–15
resonating, 64

Out-of-order assignment, 12
Output overshoot, 22
OUT statements, 10, 12, 36, 46, 51, 65, 78–79, 108
Oversimplified models, 30
Overtraining, 140
Overwriting, 191–192

Parabolic linear partial differential equations, 192
Parameter-influence studies

change effects, 80–81
characteristics of, 2, 62, 69
crossplotting, 86–87
model replication, 82–84, 87
multiple parameters, 84–85
optimization studies, 87–88, 119, 121
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programming, 85–88
random processes/parameters, 88–89
repeated-run studies, 81–82, 86
successive parameter settings, 85
system effectiveness, 85–86

Parameter-sensitivity equations, 81
Partial derivatives, 122–123, 188–191
Partial differential equations

characteristics of, 63, 67
generalizations, 192–194
heat-conduction equation in cylindrical

coordinates, 190, 192
hyperbolic, 197
linear, 192
method of lines (MOL), 186, 188–191
nonlinear, 192
simple heat-exchanger model, 194–197

Parzen-window estimates, 99–101
Pattern classification in neural networks

adaptive-resonance emulation, 151–153
associative memory and, 132, 134–138, 168
binary-selector, 138–139, 150–151, 155
characteristics of, 131
competitive, 146–154
conscience algorithms, 148
experiments with, 149–150
linear, 132
LMS algorithm, 132–133, 136, 139, 144, 159,

163
multilayer networks, 138–146
prototypes, 138, 148–149, 152
row matrices, 129–130
softmax image classifier, 133–137
supervised competitive learning, 154–155
template-pattern matching, 146–154
unsupervised, 147–149

Pattern-row matrices, in neural networks,
129–130, 133–134, 145

Performance measures, 90
Perturbations, mean-square, 122–123
Phase modulation, 58
Phase-plane plot, 11, 14–16
Physics applications, 54, 71–72
Piecewise-continuous triangles, 180–181
Piecewise-linear libraries, 42, 44
Polynomials, 11
Population-dynamics models, 18–20
Prediction error, 161–162
Predictor networks, 67
Predictor variable, 34
Preprocessors, block-diagram, 4
Probability

applications, 96
density, 90, 97–100, 103, 112–113

distribution, 109
models, 88–89
theory, 1, 111

Program-loop overhead, 96
Prototype

failures, 30
vectors, 132, 158

Pseudorandom noise
characteristics of, 35–36
generator, 67, 90, 112, 121

Pulse width-modulated pulses, 58

Radial-basis-function networks, 155, 201–203
ran(), 106–107, 109, 112, 116
Random noise, 109
Random parameters, 89
Random processes, 88–89
Random time-function inputs, 89
Random variables, 103
Random-walk simulation, 112–115
Ranges, 96–97
Real-world applications, 29–30
Rectangle-window estimate, 98–99
Rectangular matrices, 70
Recursion, illegal, 66 n7, 158
Recursive

assignments, 12 n3, 34, 51–52, 164
averaging, 107
function calls, 76
submodels, 78

Reference manual, as information resource, 70
Regenerative feedback, 55–56
Regression

coefficients, 90, 97
neural networks, 131, 138–139, 141–142

Relative frequency, statistical, 96–97
Relay-comparator function, 44, 166
repeat/until statements, 20
Repeated-run studies, 4, 81–82, 86
Replicated-model studies, 87
Replication, pulsed-neuron, 153, 163–168
reset statements, 3–4, 38, 52, 62, 71, 90
Robotics, 3
Root-locus plots, 5, 25
Rotation matrices, vectors, 72–74
Runge–Kutta integration rules, 10, 14, 45, 47,

84
Runtime

compiler, 5
statistics, 28, 96, 113

Sampled-data
assignments, see Sampled-data assignments
code, 35
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error measurement, 40
operations, 10
time average, 106–107

Sampled-data assignments
applications, 32–33, 36, 83
continuous-variable differential equations with

switching and limiter operations, 51–58
difference equations and, 32–38
integration-step control, operator and heuristic,

46–47
user-defined functions, 78–79
vector, 64–66

Sample-hold operation, 36
SAMPLE m statements, 9, 12, 36–40, 46, 51, 65,

78–79, 108
Sampling

characteristics of, 5, 8–10
periodic, 107–108
points, 28
rate, 38
times and integration steps, 11–12, 36

SAMT (Spatial Analysis and Modeling Tool)
database, 197–198

Sat, 42, 43
SAT, 42, 43
Saturation

implications of, 22–24
plant simulation with digital PID controller,

40–41
unit-gain limiter, 42

Sawtooth waveform, 54, 58
Scalar assignments, 63, 66
Scalar differential equations, xiii n1
Scalar parameters, 83
Scaled simulations, 2
Schiesser differentiation operator, 189, 194
Schmitt trigger, 47, 54–57
Scicos, 4
Second-order Runge–Kitta integration, 47
seed m command, 89
Servo error, 47
Servomechanism

bang-bang, 47–49
damping coefficient, 87
electrical, control system, 22–24
fuzzy-logic control of, 182–187
nonlinear, 116
vectorized Monte Carlo simulation, 120

sgn, 42, 44
Shift registers, 67
Short-term memory, 155, 157
Signal(s)

generators, 56–58
modulation, 56–58

processors, 50–51
quantification, 50–51

Simple applications, examples of
multiple simulation runs, splicing, 20–22
oscillators, 12–15
population dynamics models, 18–20
space-vehicle orbit simulation, 15–18

Simple backlash models, 53–54
Simulink™, 4
Sinusoidal signals, 58, 108
Smooth

approximations, 45 n7
curve, 98
fuzzy-basis functions, 181

Smooth-interpolation assumptions, 45
Software programs, simulation, 4. See also

specific software programs
Solaris©, xiii n1
Solid-state ac motor controllers, 45
Sort errors, 66
Source code, xiii n1
Space-delimited text files, 85
Space-derivative submodels, 192, 194
Space-vehicle

on-off vernier control rockets, 54
orbit simulation, 15, 17–18

Square matrices, 69
Square waves, 57, 79
Squashing functions, 127
STATE declarations, 78
State-equation models, 2, 5, 12, 74–75, 83
State variable(s)

characteristics of, 3, 5, 11–12, 14, 28 
difference-equation programs, 33–34, 36, 38
differential-equation, 62, 116
logarithmic scaling, 172
matrices, multilayer neural networks,

140–141
Monte Carlo simulation, 100
noise, 116
plant simulation with digital PID controller,

40
sampled-data assignments, 46, 52
values, 11, 80

Statistical applications
measures, 67, 88
Monte Carlo simulation and, 89–97, 111
random-walk, 112
repeated Monte Carlo simulations, 89–90

Steady-state condition, 15–16, 19
Steering-moment coefficient, 25
Step-function inputs, 11
step statements, 46–47, 52, 78–79
Stiffness factor, 172
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Stiff systems, 191
store/get operations, 83–84
Stripchart display, 23, 47
sTrue signal, 161–162
SUBMODEL declarations, 77–78
Submodels

declaration and invocation, 76–78
with differential equations, 78
vectorization, 83

Subpopulations, 18
Subscripted variables, 66
Subvectors, 71
Successive approximation, 144
Sums, 67
Supervised learning, 126, 154–155
Switches

characteristics of, 42, 44, 78–79
frequency resolution, 57
multiple, 46
outputs, numerical integration of, 45–46

swtch, 42, 44
Synapse, neural networks, 163–164

Table construction, 2, 85
Table-lookup functions, 58, 61
Tangent functions, soft-limiting hyperbolic, 22
Taxicab norms, 67–68, 126, 128
Taylor-series expansion, 122
Temperature, significance of, 86, 189, 192,

196
Template matching, 146–154
Test

signals, 57–58
statistics, 90, 97
testing programs, 89

Tevent, 45
Threshold

level, 167
value, 163

Time averaging, 106–107, 109
Time delays, 67, 83
Time histories, significance of, 5, 17, 24, 26, 39,

47, 74, 80–81, 85–86, 96–97, 113, 117, 143,
162, 165, 184

Time relationships, differential-equation systems,
36

Time-scaling operations, 172
TMAX, 2, 8–9, 11, 14, 16, 25, 28, 32, 38, 40, 47,

108, 112
Torpedo, guided-missile simulation programs

complete, 28–29
with digital control, 38–41
multirun studies, 28
simple, 25–28

Torque, 22–24, 40
Track–hold operation, 52, 92–93
Trajectory plots, 72
Transmitters, neural networks, 163–164
Triangle

functions, fuzzy-set partitions, 180–181,
184

wave, 57, 79
window estimate, 98–99

TRIGA reactor, 74

Undefined variables, 66
Unit-gain saturation limiter, 42
Unit matrices, 69
Universal approximator, 140
Unix, applications of, xiii n1, 4
Updating assignment, 34
User-defined functions, 58, 61, 75–76, 78–79

Variable-order integration rule, 18
Variable-step

implicit integration rule, 191
integration, 8–9, 11, 15, 17–18, 45, 47, 84

Variance, 89, 93, 99, 112
Vector, 60
Vector(s), see specific types of vectors

assignment, 68–69, 96
characteristics of, 5
differential equations, xiii n1
equivalent, 71
expression, 69 
linear operations on, 72–73
models, multidimensional fuzzy-set partitions,

181–182
neural-network layers, 125–127
noisy-control-system simulation, 116–118
operations, see Vector/matrix

operations/submodels
perturbation, 122

Vector/matrix operations/submodels
differential equations, 59–66
Euclidean norms, 67–68
Hamming norms, 67–68
index-shifted vectors, 66–67
linear transformations, 72, 74
masking vector expressions, 69
maximum/minimum selection, 68–69
nuclear-reactor simulation, 72–74
rotation matrices, 72–73
sums and DOT products, 67
taxicab norms, 67–68
vector assignments, 59–66, 72, 74

Vectorization, 4, 62–63, 81–83, 85, 87. See also
Vectorized simulation
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Vectorized simulation
agroecological models, 197–199
EUROSIM, 171
fuzzy-logic function generators, 172–186
with logarithmic plots, 171–172
partial differential equations, 186–197

Vectr d/dt, 61
Velocity, implications of, 20, 25, 59, 91–92

Vissim™, 4
Voltage, 22, 47, 120, 163–164
Volterra-Lotka differential equations, 19–20
Voronoi tessellations, 150–151

Wind-tunnel data, 122–123

Yaw-rotation equation, 25
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